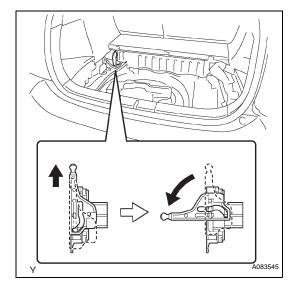
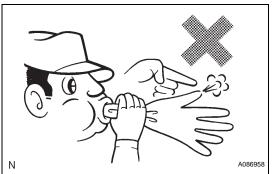
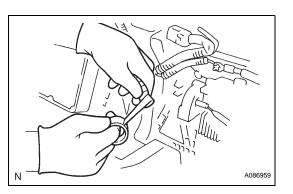
SFI SYSTEM

PRECAUTION

1. PRECAUTIONS FOR HIGH-VOLTAGE CIRCUIT INSPECTION AND SERVICE

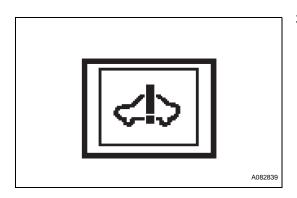

- (a) Technicians to be engaged in inspection and service on high-voltage components and systems should receive special training.
- (b) All the high-voltage wire harness connectors are colored orange: the HV battery and other highvoltage components and identified by the "High Voltage" caution labels.


Do not touch these connectors and components before removing the service plug. Remove the service plug prior to touching these connectors and components.


- (c) Before inspecting or servicing the high-voltage components/systems, be sure to take safe precautions such as wearing insulated gloves and removing the service plug to prevent electric shock or electrocution. Store the removed service plug in your pocket to prevent other technicians from reinstalling it while you are serving high-voltage components/systems.
- (d) After removing the service plug, wait at least for 5 minutes before touching any of the high-voltage connectors and terminals.
 HINT:

At least 5 minutes is required to discharge electricity from the high-voltage condenser inside the inverter.

- (e) Before wearing insulted gloves, make sure that they are not rupture, torn or damaged in any other way. Do not wear wet insulated gloves.
- (f) When servicing, be careful not to drop metallic materials like a mechanical pencil or tools etc. Causing a short circuit may result.
- (g) Wear the insulated gloves before touching a bare high-voltage terminal. Verify that electricity has discharged from the terminal (approximately 0 V) using an electrical tester.



- (h) After disconnecting or exposing a high-voltage connector or terminal, insulate it immediately using insulation tape.
- (i) The screw of a high-voltage terminal should be tightened firmly to the specified torque. Either insufficient or excessive tightening torque can cause HV system failure.
- (j) Call other technicians' attention to prevent accidents during working on the high-voltage components/ systems by posting a sign to notify them (see page IN-5).
- (k) Prior to reinstalling the service plug, again, verify whether or not any parts or tools have been left behind, and check if high-voltage terminal screws have been securely tightened as well as the connectors have been properly reconnected.

2. PRECAUTIONS TO BE OBSERVED WHEN INSPECTING OR SERVICING ENGINE COMPARTMENT

The PRIUS automatically turns the engine ON and OFF when the power switch is ON (READY lamp on the instrument panel is being illuminated). Turn the HV main system OFF before serving inside the engine compartment.

CAUTION ATTENTION

3. INSPECTION

HINT:

A082796

When the A/C compressor operation is not required, the engine is warmed up, and the battery is charged properly, the PRIUS automatically stops the engine while the vehicle is at rest. In the case of a continuous engine operation is needed for performing engine maintenance, activate inspection mode. Inspection mode enables the engine to run continuously. Activating inspection mode (not using the intelligent tester)

Perform the following steps from (1) through (4) in 60 seconds.

(1) Turn the power switch ON (IG).

(2) Fully repress the accelerator pedal twice with the transmission in the P position.

(3) Fully depress the accelerator pedal twice with the transmission in the N position.

(4) Fully depress the accelerator pedal twice with the transmission in the P position.

(5) Check that the HV system warning lamp flashes on the multi-information display.

(6) Start the engine by pushing the power switch, depressing the brake pedal.

Activate inspection mode (Using the intelligent tester)

(1) Connect the intelligent tester to the DLC3.

(2) Turn the power switch ON (IG).

(3) Turn the intelligent tester ON.

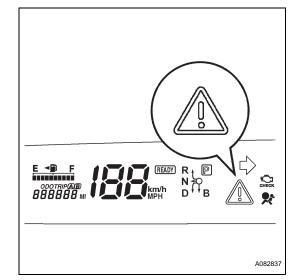
(4) Enter the following menus: DIAGNOSIS / OBD / MOBD / HV ECU / ACTIVE TEST / INSPECTION MODE / ON.

(5) Check that the HV system warning flashes on the multi-information display and the master warning lamp is illuminated in the combination meter.

(6) Start the engine by pushing the power switch,

depressing the brake pedal.

Deactivating inspection mode


(1) Turn the power switch OFF. The HV main system turns off simultaneously.

NOTICE:

- The idling speed in inspection mode is approximately 1,000 rpm. The engine speed increases to 1,500 rpm if the accelerator pedal is depressed by less than 60%. If the accelerator pedal is depressed by more than 60%, the engine speed increases to 2,500 rpm.
- If a DTC us set during inspection mode, the master warning lamp and the error warming lamp illuminate on the multi-information display.
- When the master warning lamp illuminates during inspection mode, deactivate inspection mode, and check a DTC(s).
- Driving the vehicle without deactivating inspection mode may damage the transaxle.
- 4. FOR USING FOR OBD II SCAN TOOL OR INTELLIGENT TESTER CAUTION:

Observe the following items for safety reasons:

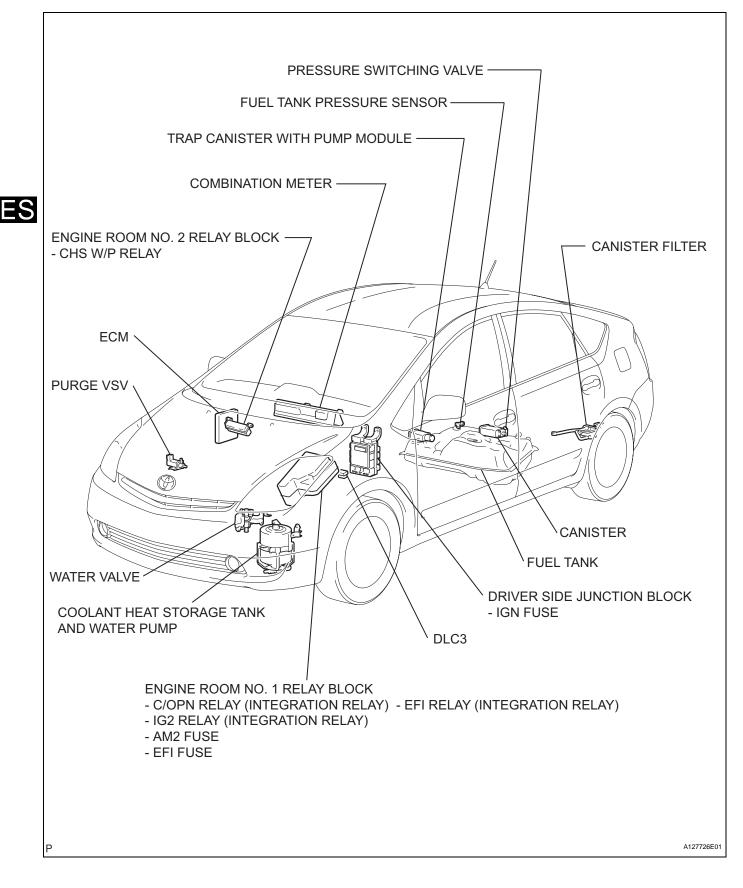
- Read its instruction books before using the scan tool or the tester.
- Prevent the tester cable from being caught on the pedals, shift lever and steering wheel when driving the tester connected to the vehicle.

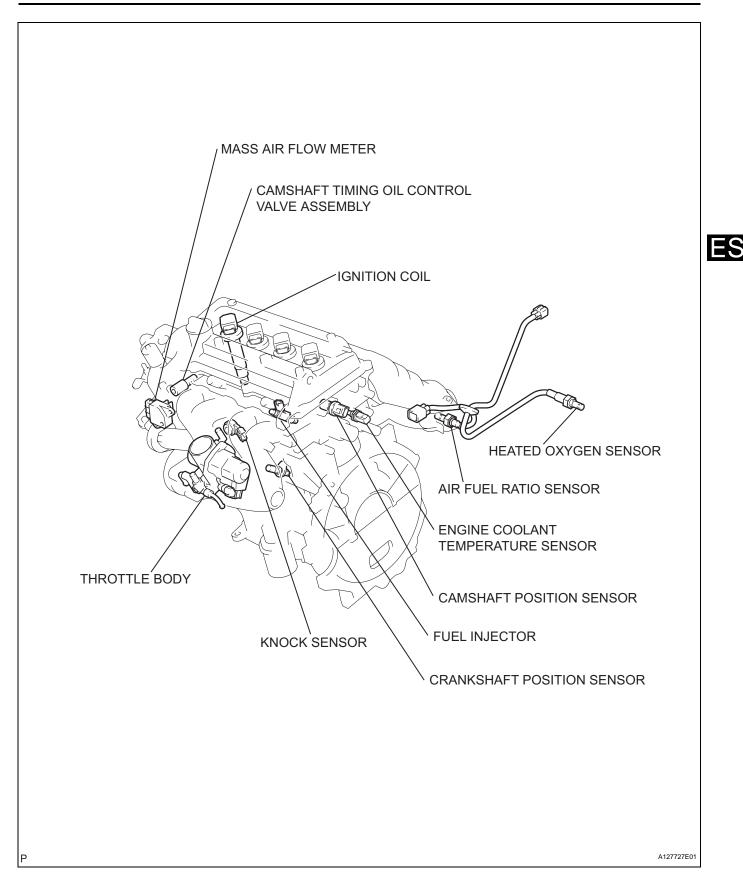
- When driving the vehicle for testing purposes using the scan tool or the tester, two persons are required. One is for driving the vehicle, and the other operates the tester.
- 5. INITIALIZATION NOTICE:

When disconnecting the negative (-) battery cable, initialize the following systems after the terminal is reconnected.

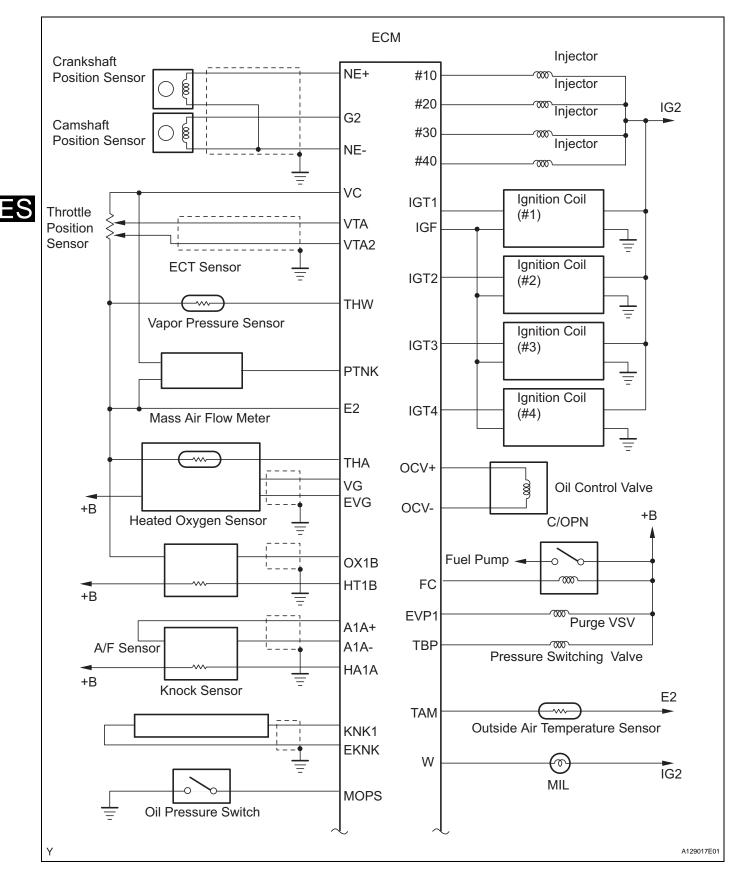
System Name	See page
Power Window Control System	IN-32

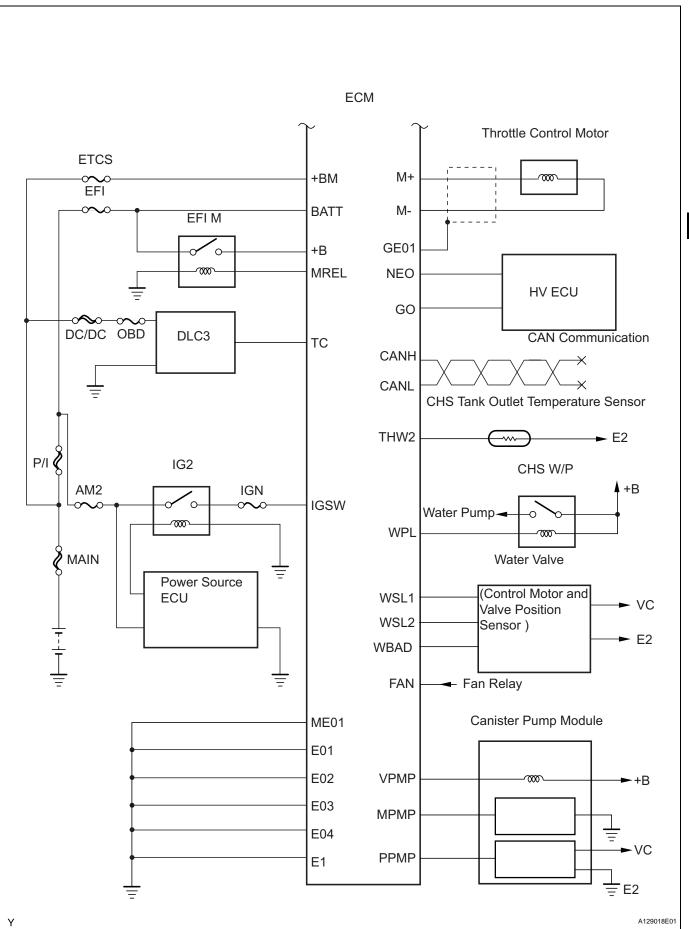
HINT:

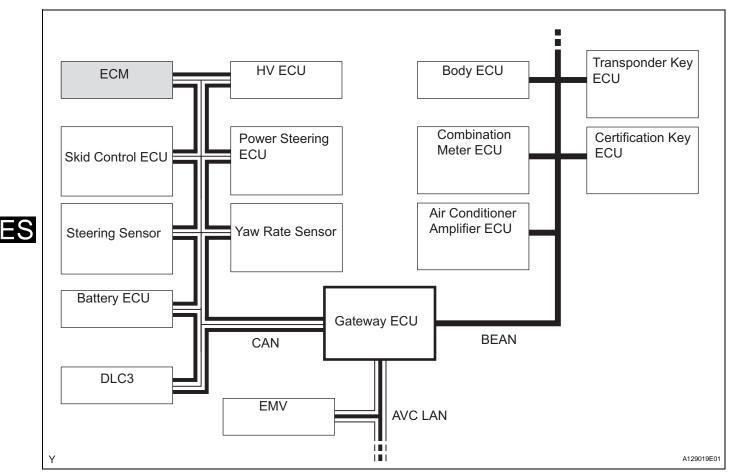

Initialization can not be completed by only removing the battery.


6. NOTICES FOR HYBRID SYSTEM ACTIVATION

- When the warning lamp is illuminated or the battery has been disconnected and reconnected, pressing the switch may not start the system on the first try. If so, press the power switch again.
- With the power switch's power mode changed to ON (IG), disconnect the battery. If the key is not in the key slot during connection, DTC B2779 may be output.


Terms Definitions		
Monitor description	Description of what the ECM monitors and how it detects malfunctions (monitoring purpose and its details).	
Related DTCs	A group of diagnostic trouble codes that are output by ECM based on same malfunction detection logic.	
Typical enabling condition	Preconditions that allow ECM to detect malfunctions. With all preconditions satisfied, ECM sets DTC when monitored value(s) exceeds malfunction threshold(s).	
Sequence of operation	Order of monitor priority, applied if multiple sensors and components are involved in single malfunction detection process. Each sensor and component monitored in turn and not monitored until previous detection operation completed.	
Required sensor/components	Sensors and components used by ECM to detect each malfunction.	
Frequency of operation	Number of times ECM checks for each malfunction during each driving cycle. "Once per driving cycle" means ECM only performs checks for that malfunction once during single driving cycle. "Continuous" means ECM performs checks for that malfunction whenever enabling conditions are met.	
Duration	Minimum time for which ECM must detect continuous deviation in monitored value(s) in order to set DTC. Timing begins when Typical Enabling Conditions are met.	
Malfunction thresholds	Value beyond which ECM determines malfunctions exist and sets DTCs.	
MIL operation	Timing of MIL illumination after malfunction detected. "Immediate" means ECM illuminates MIL as soon as malfunction detected. "2 driving cycle" means ECM illuminates MIL if same malfunction detected second time during next sequential driving cycle.	

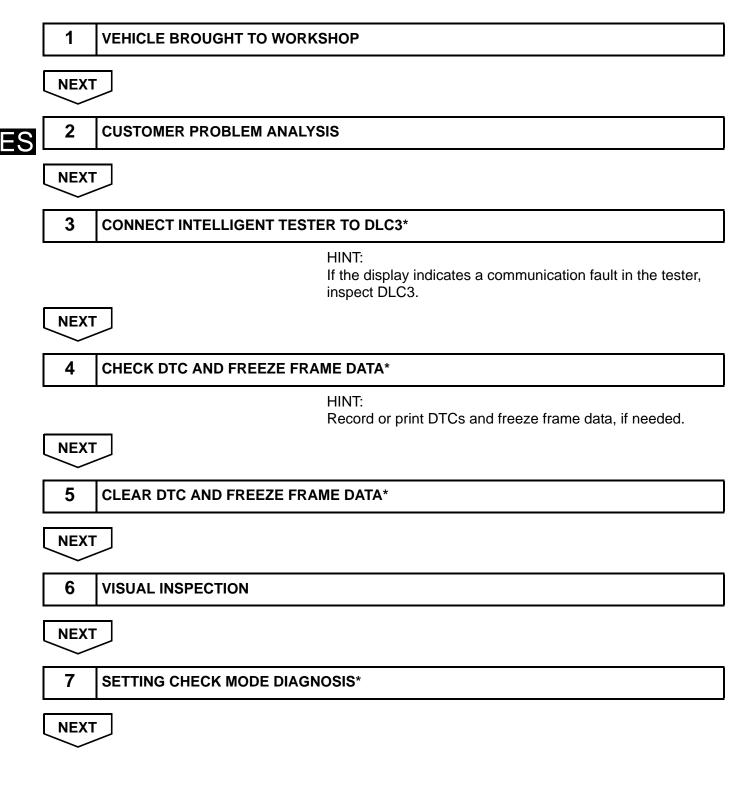

PARTS LOCATION



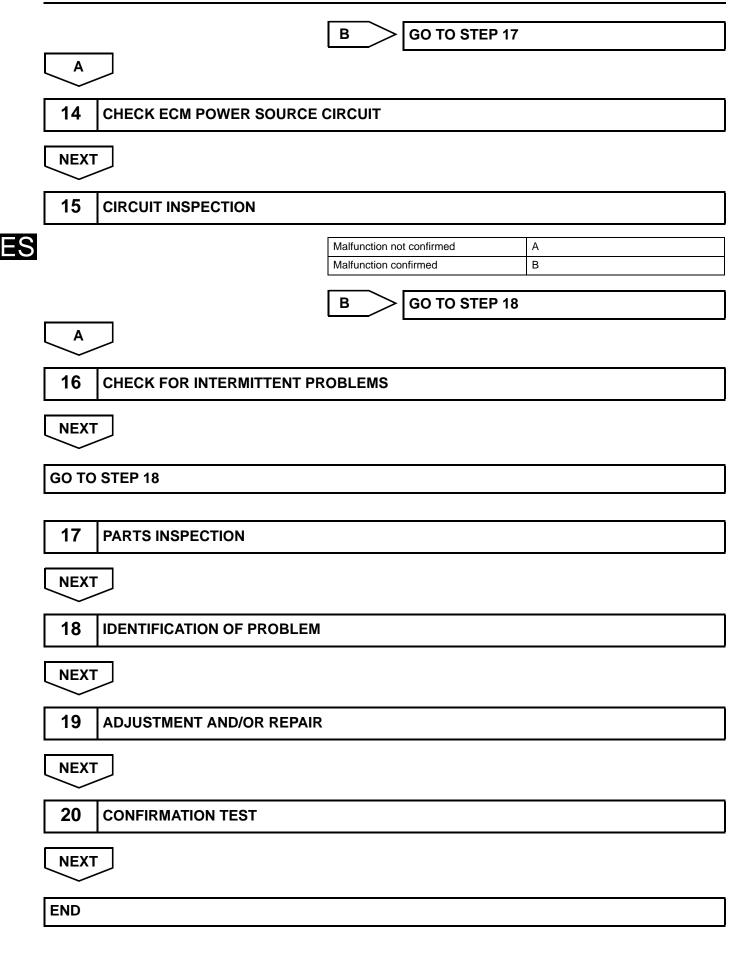
SYSTEM DIAGRAM

COMMUNICATIONS

The ECM communicates with the following ECM and ECUs using the signals listed below. The following table explains receiving and sending signals by ECM or ECU.


Transmit To	Receive From	Signal	Communication Line
HV ECU	ECM	 Inspection mode signal MIL illumination requirement Shift position information Ready state Starter ON 	CAN
ECM	HV ECU	 Ambient temperature Intake air temperature Radiator fan drive Engine warm-up requirement Engine rpm 	CAN
ECM	Battery ECU	Engine rpm	CAN
ECM	Power Steering ECU	Inspection mode	CAN
ECM	Skid Control ECU	Inspection mode	CAN
ECM	Body ECU	Inspection modeEngine rpm	BEAN, CAN
Combination Meter ECU	ECM	Fuel level	BEAN, CAN
ECM	Combination Meter ECM	 Engine coolant temperature Engine rpm Injection volume Inspection mode Engine oil pressure switch 	BEAN, CAN

Transmit To	Receive From	Signal	Communication Line
ECM	Air Conditioner Amplifier ECU	 Engine coolant temperature Engine rpm Ambient temperature Coolant heat storage water valve close 	BEAN, CAN
ECM	Certification ECU	Engine rpm	BEAN, CAN
ECM	EMV	 Engine coolant temperature Inspection mode Engine oil pressure switch 	ACV LAN, CAN

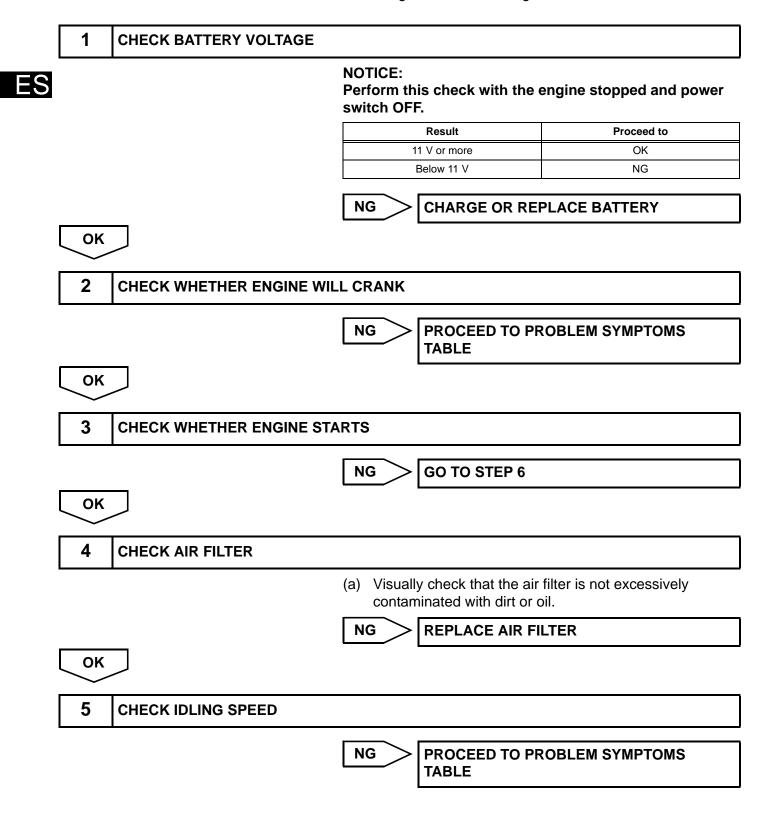

HOW TO PROCEED WITH TROUBLESHOOTING

HINT:

*: Use the intelligent tester.

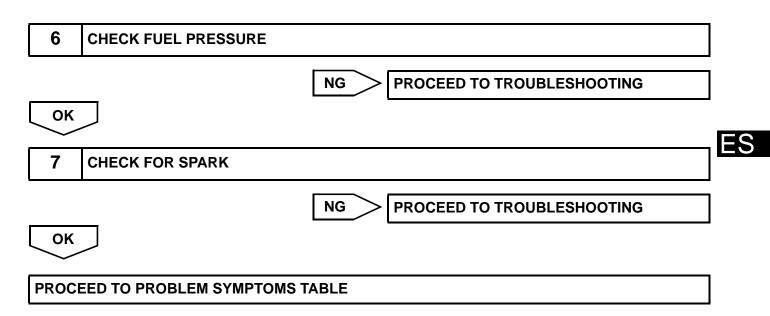
8	PROBLEM SYMPTOM CONFIRM	IATION	
		If the engine does not start, fin procedures and "CONDUCT I procedures below.	st perform the "CHECK DTC" BASIC INSPECTION"
		Malfunction does not occur	A
		Malfunction occurs	В
		B GO TO STEP 10	
A	\supset		
9	SYMPTOM SIMULATION		
	Ţ		
10	DTC CHECK*		
		Malfunction code	A
		No code	В
		B GO TO STEP 12	
A	\supset		
11	DTC CHART		
	Ţ		
GO TO	D STEP 14		
12	BASIC INSPECTION		
		Wrong ports not confirmed	
		Wrong parts not confirmed Wrong parts confirmed	AB
		B GO TO STEP 17	
A	\supset		
13	PERFORM SYMPTOMS TABLE		
		Wrong circuit confirmed	A
		Wrong parts confirmed	B

CHECK FOR INTERMITTENT PROBLEMS


HINT:

Inspect the vehicle's ECM using check mode. Intermittent problems are easier to detect with the intelligent tester when the ECM is in check mode. In check mode, the ECM uses 1 trip detection logic, which is more sensitive to malfunctions than normal mode (default), which uses 2 trip detection logic.

- 1. Clear the DTCs (see page ES-29).
- 2. Switch the ECM from normal mode to check mode using the intelligent tester (see page ES-32).
- 3. Perform a simulation test (see page IN-36).
- 4. Check and wiggle the harness(es), connector(s) and terminal(s) (see page IN-45).
- 5. Wiggle the harness(s) and connector(s) (see page IN-45).


BASIC INSPECTION

When the malfunction is not confirmed by the DTC check, troubleshooting should be carried out in all circuits considered to be possible causes of the problem. In many cases, by carrying out the basic engine check shown in the following flowchart, the location of the problem can be found quickly and efficiently. Therefore, using this check is essential when engine troubleshooting.

PROCEED TO PROBLEM SYMPTOMS TABLE

ΟΚ

CHECKING MONITOR STATUS

The purpose of the monitor result (mode 06) is to allow access to the results for on-board diagnostic monitoring tests of specific components/systems that are not continuously monitored. Examples are catalyst, evaporative emission (EVAP) and thermostat.

The monitor result allows the OBD II scan tool to display the monitor status, test value, minimum test limit and maximum test limit. These data are displayed after the vehicle has been driven to run the monitor.

When the test value is not between the minimum test limit and maximum test limit, the ECM (PCM) interprets this as a malfunction. When the component is not malfunctioning, if the difference of the test value and test limit is very small, the component will malfunction in the near future.

Perform the following instruction to view the monitor status. Although this instruction references the Lexus/Toyota diagnostic tester, it can be checked using a generic OBD II scan tool. Refer to your scan tool operator's manual for specific procedures.

1. PERFORM MONITOR DRIVE PATTERN

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch and intelligent tester ON.
- (c) Clear the DTCs (see page ES-29).
- (d) Run the vehicle in accordance with the applicable drive pattern described in READINESS MONITOR DRIVE PATTERN (see page ES-17). DO NOT turn the power switch OFF.
 NOTICE:

The test results will be lost if the power switch is turned OFF.

2. ACCESS MONITOR RESULT

- (a) Select from the intelligent tester menus: DIAGNOSIS / ENHANCED OBD II / MONITOR INFO and MONITOR RESULT. The monitor status appears after the component name.
 - INCMPL: The component has not been monitored yet.
 - PASS: The component is functioning normally.
 - FAIL: The component is malfunctioning.
- (b) Confirm that the component is either PASS or FAIL.
- (c) Select the component and press ENTER. The accuracy test value appears if the monitor status is either PASS or FAIL.

3. CHECK COMPONENT STATUS

(a) Compare the test value with the minimum test limit (MIN LIMIT) and maximum test limit (MAX LIMIT).

(b) If the test value is between the minimum test limit and maximum test limit, the component is functioning normally. If not, the component is malfunctioning. The test value is usually significantly higher or lower than the test limit. If the test value is on the borderline of the test limits, the component will malfunction in near future. HINT:

The monitor result might on rare occasions be PASS even if the malfunction indicator lamp (MIL) is illuminated. This indicates the system malfunctioned on a previous driving cycle. This might be caused by an intermittent problem.

4. MONITOR RESULT INFORMATION

ES

If you use a generic scan tool, multiply the test value by the scaling value listed below.

A/F Sensor Bank Sensor 1

Monitor ID	Test ID	Scaling	Unit	Description
\$01	\$8E	Multiply by 0.0003	No dimension	A/F sensor deterioration level

HO2S Bank Sensor 2

Monitor ID	Test ID	Scaling	Unit	Description
\$02	\$07	Multiply by 0.001	V	Minimum sensor voltage
\$02	\$08	Multiply by 0.001	V	Maximum sensor voltage
\$02	\$8F	Multiply by 0.0003	g	Maximum oxygen storage capacity

Catalyst - Bank 1

Monitor ID	Test ID	Scaling	Unit	Description
\$21	\$A9	Multiply by 0.0003	No dimension	Oxygen storage capacity of catalyst bank 1

EVAP

Monitor ID	Test ID	Scaling	Unit	Description
\$3D	\$C9	Multiply by 0.001	kPa	Test value for small leak (P0456)
\$3D	\$CA	Multiply by 0.001	kPa	Test value for gross leak (P0455)
\$3D	\$CB	Multiply by 0.001	kPa	Test value for leak detection pump OFF stuck (P2401)
\$3D	\$CD	Multiply by 0.001	kPa	Test value for leak detection pump ON stuck (P2402)
\$3D	\$CE	Multiply by 0.001	kPa	Test value for vent valve OFF stuck (P2420)
\$3D	\$CF	Multiply by 0.001	kPa	Test value for vent valve ON stuck (P2419)
\$3D	\$D0	Multiply by 0.001	kPa	Test value for reference orifice low flow (P043E)
\$3D	\$D1	Multiply by 0.001	kPa	Test value for reference orifice high flow (P043F)
\$3D	\$D4	Multiply by 0.001	kPa	Test value for purge VSV close stuck (P0441)
\$3D	\$D5	Multiply by 0.001	kPa	Test value for purge VSV open stuck (P0441)

Monitor ID	Test ID	Scaling	Unit	Description
\$3D	\$D7	Multiply by 0.001	kPa	Test value for purge flow insufficient (P0441)

Misfire

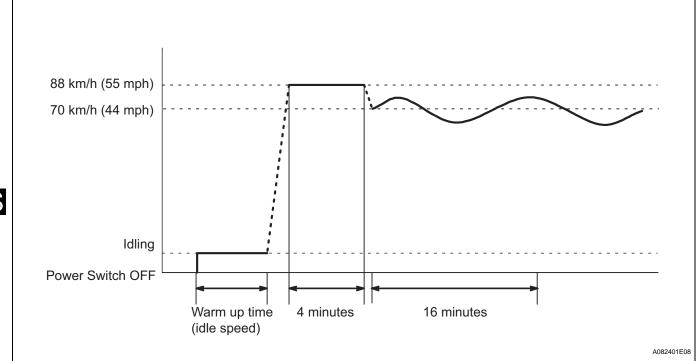
Monitor ID	Test ID	Scaling	Unit	Description
\$A1	\$0B	Multiply by 1	Time	Exponential Weighted Moving Average (EWMA) misfire for all cylinders: Misfire counts for last ten driving cycles - Total
\$A1	\$0C	Multiply by 1	Time	Misfire rate for all cylinders: Misfire counts for last/current driving cycle - Total
\$A2	\$0B	Multiply by 1	Time	EWMA misfire for cylinder 1: Misfire counts for last ten driving cycles - Total
\$A2	\$0C	Multiply by 1	Time	Misfire rate for cylinder 1: Misfire counts for last/ current driving cycle - Total
\$A2	\$0C	Multiply by 1	Time	Misfire rate for cylinder 1: Misfire counts for last/ current driving cycle - Total
\$A3	\$0C	Multiply by 1	Time	Misfire rate for cylinder 2: Misfire counts for last/ current driving cycle - Total
\$A4	\$0B	Multiply by 1	Time	EWMA misfire for cylinder 3: Misfire counts for last ten driving cycles - Total
\$A4	\$0C	Multiply by 1	Time	Misfire rate for cylinder 3: Misfire counts for last/ current driving cycle - Total
\$A5	\$0B	Multiply by 1	Time	EWMA misfire for cylinder 4: Misfire counts for last ten driving cycles - Total
\$A5	\$0C	Multiply by 1	Time	Misfire rate for cylinder 4: Misfire counts for last/ current driving cycle - Total

READINESS MONITOR DRIVE PATTERN

1. PURPOSE OF THE READINESS TESTS

- The On-Board Diagnostic (OBD II) system is designed to monitor the performance of emissionrelated components, and report any detected abnormalities with Diagnostic Trouble Codes (DTCs). Since various components need to be monitored during different driving conditions, the OBD II system is designed to run separate monitoring programs called readiness monitors.
- The intelligent tester's software must be version 9.0 or newer to view the readiness monitor status.
 From the "Enhanced OBD II Menu", select "Monitor Status" to view the readiness monitor status.
- A generic OBD II scan tool can also be used to view the readiness monitor status.
- When the readiness monitor status reads "completer", the necessary conditions have been met for running performance tests for that readiness monitor. HINT:

Many state inspection and Maintenance (IM) programs require a vehicle's readiness monitor status to show "complete".


- The Readiness Monitor will be reset to "incomplete" if:
 - The ECM has lost battery power or a fuse has blown.
 - DTCs have been cleared.
 - The conditions for running the Readiness Monitor have been met.
- If the readiness monitor status shows "incomplete", follow the appropriate readiness monitor drive pattern to change the status to "complete".

CAUTION:

Strictly observe of posted speed limits, traffic laws, and road condition when performing these drive patterns. NOTICE:

The following drive patterns are the fastest method of completing all the requirements necessary for making the readiness monitor status read "complete".

If forced to momentarily stop a drive pattern due to traffic or other factors, the drive pattern can be resumed. Upon completion of the drive pattern, in most cases, the readiness monitor status will change to "complete". Sudden changes in vehicle loads and speeds, such as driving up and down hills and / or sudden acceleration, hinder readiness monitor completion.

2. CATALYST MONITOR (A/F SENSOR TYPE)

(a) Preconditions

The monitor will not run unless:

- MIL is OFF.
- Engine Coolant Temperature (ECT) is 80°C (176°F) or greater.
- Intake Air Temperature (IAT) is -10°C (14°F) or greater.

NOTICE:

To complete the readiness test in cold ambient conditions (less than $-10^{\circ}C$ [14°F]), turn the power switch OFF and then turn it ON again. Perform the drive pattern a second time.

- (b) Drive Pattern
 - Connect the intelligent tester or OBD II scan tool to DLC3 to check readiness monitor status and preconditions.
 - (2) Put the engine in inspection mode (see page ES-1).
 - (3) Start the engine and warm it up.
 - (4) Drive the vehicle at 70 to 88 km/h (44 to 55 mph) for approximately 4 minutes (the engine must be run during monitoring).
 NOTICE:

Drive with smooth throttle operation and avoid sudden acceleration.

If IAT was less than 10°C (50°F) when the engine was started, drive the vehicle at 70 to 88 km/h (44 to 55 mph) for additional 4 minutes.

 (5) Drive the vehicle allowing speed to fluctuate between 70 to 88 km/h (44 to 55 mph) for about 16 minutes.

NOTICE:

Drive with smooth throttle operation and avoid sudden closure of the throttle valve.

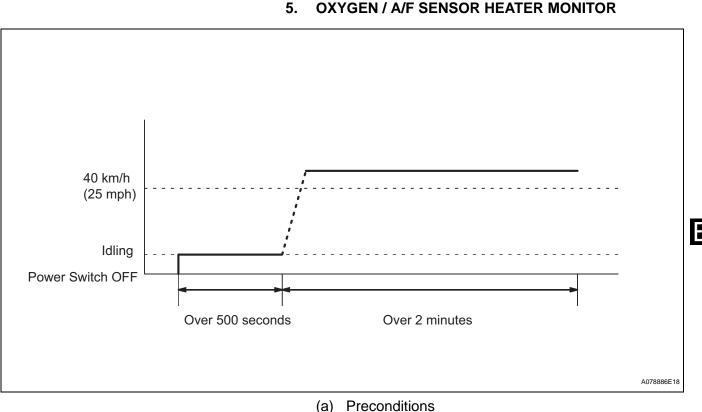
(6) Check the status of the readiness monitor on the scan tool display. If readiness monitor status did not switch to complete, verify that the preconditions are met, turn the power switch OFF, and then repeat steps (4) and (5).

3. EVAP MONITOR (KEY OFF TYPE)

- (a) Preconditions
 - The monitor will not run unless:
 - The fuel tank is less than 90% full.
 - The altitude is less than 8,000 ft (2,450 m).
 - The vehicle is stationary.
 - The engine coolant temperature is 4.4 to 35°C (40 to 95°F).
 - The intake air temperature is 4.4 to 35°C (40 to 95° F).
 - Vehicle was driven in an urban area (or on a freeway) for 10 minutes or more.
 - (b) Monitor Conditions
 - (1) Turn the power switch OFF and wait for 6 hours. HINT:

Do not start the engine until checking Readiness Monitor status. If the engine is started, the step described above must be repeated.

- (c) Monitor Status
 - (1) Connect the intelligent tester to the DLC3.
 - (2) Turn the power switch ON (IG) and turn the tester ON.
 - (3) Check the Readiness Monitor status displayed on the tester.


If the status does not switch to COMPL (complete), restart the engine, make sure that the preconditions have been met, and then perform the Monitor Conditions again.

4. **OXYGEN / AIR FUEL RATIO SENSOR MONITOR** (FRONT A/F SENSOR AND REAR O2S SYSTEM) 88 km/h (55 mph) (under 3,200 rpm) 70 km/h (44 mph) (over 1,100 rpm) Warm up time Idling Υ¢ Power Switch OFF 5 to 10 minutes (Idle speed) A092806E04 Preconditions (a) The monitor will not run unless: MIL is OFF (b) Drive Pattern (1) Connect the intelligent tester or OBD II scan tool to DLC3 to check monitor status and preconditions. (2) Put the engine in inspection mode.

- (3) Start the engine and allow it to idle for 2 minutes.
- (4) Deactivate the inspection mode and drive the vehicle at 70 to 88 km/h (44 to 55 mph) or more for 5 to 10 minutes.
- (5) Check the readiness monitor status. If the readiness monitor status did not switch to "complete", check the preconditions, turn the power switch OFF, and then repeat steps (1) to (4).

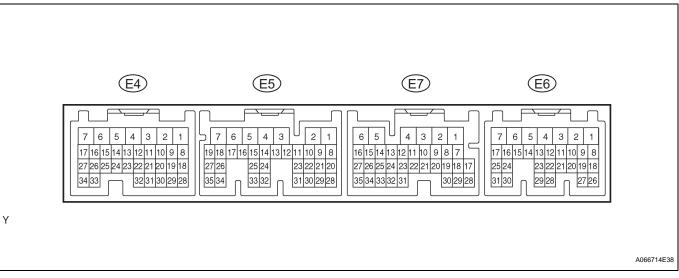
NOTICE:

Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.

- Preconditions
 The monitor will not run unless: MIL is OFF.
- (b) Drive Pattern
 - Connect the intelligent tester or OBD II scan tool to DLC3 to check monitor status and preconditions.
 - (2) Put the engine in inspection mode.
 - (3) Start the engine and allow it to idle for 500 seconds or more.
 - (4) Deactivate the inspection mode and drive the vehicle at 40 km/h (25 mph) or more at least for 2 minutes.
 - (5) Check the readiness monitor status. If the readiness monitor status did not change to "complete", check the preconditions, turn the power switch OFF, and repeat steps (2) and (3).

NOTICE:

Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.


PROBLEM SYMPTOMS TABLE

When the malfunction is not confirmed in the diagnostic trouble code check and the problem still can not be confirmed in the basic inspection, use this table and troubleshoot according to the priority order given below.

Symptom	Suspected area	See page
	1. No. 1 Motor generator	-
Engine does not crank (Does not start)	2. Hybrid control system	HV-20
	3. Immobiliser	EI-5
	4. Smart key system	ST-66
	1. ECM power source circuit	ES-412
	2. Fuel pump control circuit	ES-423
	3. Spark plug	IG-5
No initial combustion (Does not start)	4. Immobiliser system	EI-5
No initial compusition (Does not start)	5. Injector	FU-15
	6. ECM	ES-24
	7. Crankshaft position sensor circuit	ES-159
	8. VC output circuit	ES-418
	1. Fuel pump control circuit	ES-423
	2. Spark plug	IG-5
No complete combustion (Does not start)	3. Immobiliser system	EI-5
	4. Injector	FU-15
	5. Crankshaft position sensor circuit	ES-159
	1. Fuel pump control circuit	ES-423
	2. Compression	EM-1
Engine cranks normally but difficult to start	3. Spark plug	IG-5
	4. Injector	FU-15
	5. Crankshaft position sensor circuit	ES-159
	1. Fuel pump control circuit	ES-423
Difficult to start with cold engine	2. Spark plug	IG-5
Difficult to start with cold engine	3. Injector	FU-15
	4. Crankshaft position sensor circuit	ES-159
	1. Fuel pump control circuit	ES-423
Difficult to start with hot engine	2. Spark plug	IG-5
	3. Injector	FU-15
	4. Crankshaft position sensor circuit	ES-159
High engine idle speed (Poor idling)	1. ECM power source circuit	ES-412
	2. Electronic throttle control system	ES-329
	1. Fuel pump control circuit	ES-423
Low engine idle speed (Poor idling)	2. Electronic throttle control system	ES-329
	3. Injector	FU-15
	1. Compression	EM-1
	2. Electronic throttle control system	ES-329
Rough idling (Poor idling)	3. Injector	FU-15
	4. Fuel pump control circuit	ES-423
	5. Spark plug	IG-5
	1. ECM power source circuit	ES-412
Hunting (Poor idling)	2. Electronic throttle control system	ES-329
	3. Fuel pump control circuit	ES-423

Symptom Suspected area		See page	
	1. Fuel pump control circuit	ES-423	
Hesitation/Poor acceleration (Poor driveability)	2. Injector	FU-15	
	3. Spark plug	IG-5	
	4. HV transaxle	-	
	1. Fuel pump control circuit	ES-423	
Surging (Poor driveability)	2. Spark plug	IG-5	
	3. Injector	FU-15	
	1. Fuel pump control circuit	ES-423	
Engine stells seen ofter starting	2. Electronic throttle control system	ES-329	
Engine stalls soon after starting	3. Immobiliser	EI-5	
	4. Crankshaft position sensor circuit	ES-159	
Unable to refuel/Difficult to refuel	1. ORVR system	-	

TERMINALS OF ECM

Each ECM terminal's standard voltage is shown in the table below.

In the table, first follow the information under "Condition". Look under "Symbols (Terminals No.)" for the terminals to be inspected. The standard voltage between the terminals is shown under "STD voltage".

Use the illustration above as a reference for the ECM terminals.

Symbols (Terminal No.)	Wiring Color	Terminal Description	Condition	STD Voltage (V)
BATT (E7-6) - E1 (E5-28)	R - BR	Battery	Always	9 to 14
+B (E7-4) - E1 (E5-28)	B - BR	Power source of ECM	Power switch ON (IG)	9 to 14
+BM (E7-5) - E1 (E5-28)	GR - BR	Power source of ETCS	Always	9 to 14
IGSW (E6-9) - E1 (E5-28)	O - BR	Power switch signal	Power switch ON (IG)	9 to 14
MREL (E7-7) - E1 (E5-28)	G - BR	Main relay control signal	Power switch ON (IG)	9 to 14
VC (E4-18) - E2 (E4-28)	R - BR	Power source of sensor (a specific voltage)	Power switch ON (IG)	4.5 to 5.5
NE+ (E4-33) - NE- (E4-34)	R - G	Crankshaft position sensor	Idling (during inspection mode)	Purge generation (See page ES-159)
G2 (E4-26) - NE- (E4-34)	R - G	Camshaft position sensor	Idling (during inspection mode)	Purge generation (See page ES-159)
VTA (E4-32) - E2 (E4-28)	P - BR	Throttle position sensor	Power switch ON (IG), Throttle valve fully closed	0.5 to 1.2
VTA (E4-32) - E2 (E4-28)	P - BR	Throttle position sensor	HV system ON, During active test to open throttle valve (see page ES-33)	3.2 to 4.8
VTA2 (E4-31) - E2 (E4-28)	L - BR	Throttle position sensor	Power switch ON (IG), Accelerator pedal released	2.0 to 2.9
VTA2 (E4-31) - E2 (E4-28)	L - BR	Throttle position sensor	HV system ON, During active test to open throttle valve (see page ES-33)	4.6 to 5.5
VG (E5-33) - EVG (E5-32)	G - R	Mass air flow meter	Idling (during inspection mode), A/C switch OFF	1.0 to 1.5
THA (E4-20) - E2 (E4-28)	W - BR	Intake air temperature sensor	Idling (during inspection mode), Intake air temperature at 20°C (68°F)	0.5 to 3.4

Symbols (Terminal No.)	Wiring Color	Terminal Description	Condition	STD Voltage (V)
THW (E4-19) - E2 (E4-28)	W - BR	Engine coolant temperature sensor	Idling (during inspection mode), Engine coolant temperature at 80°C (176°F)	0.2 to 1.0
#10 (E4-2) - E01 (E4-7)	Y - BR	Injector	Power switch ON (IG)	9 to 14
#20 (E4-3) - E01 (E4-7)	B - BR	Injector	Power switch ON (IG)	9 to 14
#30 (E4-4) - E01 (E4-7)	L - BR	Injector	Power switch ON (IG)	9 to 14
#40 (E4-5) - E01 (E4-7)	R - BR	Injector	Power switch ON (IG)	9 to 14
IGT1 (E4-8) - E1 (E5-28)	Y - BR	Ignition coil No. 1 (#1) (Ignition signal)	Idling (during inspection mode)	Pulse generation (See page ES-167)
IGT2 (E4-9) - E1 (E5-28)	W - BR	Ignition coil No. 1 (#2) Ignition signal)	Idling (during inspection mode)	Pulse generation (See page ES-167)
IGT3 (E4-10) - E1 (E5-28)	G - BR	Ignition coil No. 1 (#3) Ignition signal)	Idling (during inspection mode)	Pulse generation (See page ES-167)
IGT4 (E4-11) - E1 (E5-28)	Y - BR	Ignition coil No. 1 (#4) Ignition signal)	Idling (during inspection mode)	Pulse generation (See page ES-159)
KNK1 (E5-1) - EKNK (E5- 2)	B - W	Knock sensor	Idling (during inspection mode)	Pulse generation (See page ES-154)
IGF (E4-23) - E1 (E5-28)	B - BR	Ignition confirmation signal	Idling (inspection mode)	Pulse generation (See page ES-167)
A1A+ (E5-23) - E1 (E5-28)	G - BR	A/F sensor	Power switch ON (IG)	3.0 to 3.6
A1A- (E5-22) - E1 (E5-28)	R - BR	A/F sensor	Power switch ON (IG)	2.7 to 3.3
OX1B (E6-22) - E2 (E4- 28)	Y - BR	Heated oxygen sensor	Maintain engine speed at 2,500 rpm for 2 minutes after warming up	Pulse generation
HA1A (E5-7) - E04 (E4-1)	Y - BR	A/F sensor heater	Idling (during inspection mode)	Below 3.0
HA1A (E5-7) - E04 (E4-1)	Y - BR	A/F sensor heater	Power switch ON (IG)	9 to 14
HT1B (E6-6) - E03 (E6-7)	G - BR	Heated oxygen sensor heater	Idling (during inspection mode)	Below 3.0
HT1B (E6-6) - E03 (E6-7)	G - BR	Heated oxygen sensor heater	Power switch ON (IG)	9 to 14
PTNK (E7-34) - E2 (E4- 28)	Y - BR	Vapor pressure sensor	Power switch ON (IG)	2.9 to 3.7
PTNK (E7-34) - E2 (E4- 28)	Y - BR	Vapor pressure sensor	Apply vacuum 4.0 kPa	Below 0.5
EVP1 (E5-14) - E1 (E5-28)	R - BR	EVAP VSV	Power switch ON (IG)	9 to 14
TBP (E7-18) - E1 (E5-28)	R - BR	Tank bypass VSV	Power switch ON (IG)	9 to 14
M+ (E5-6) - E1 (E5-28)	L - BR	Throttle actuator control motor	Idling (during inspection mode)	Pulse generation
M- (E5-5) - E1 (E5-28)	P - BR	Throttle actuator control motor	Idling (during inspection mode)	Pulse generation
OCV+ (E4-15) - OCV- (E4- 14)	Y - W	Camshaft timing oil control	Power switch ON (IG)	Pulse generation (See page ES-55)
TAM (E7-21) - E2 (E4-28)	W - BR	Outside air temperature sensor	Ambient air temperature 40 to 140°C (-40 to 284°F)	0.8 to 1.3
MOPS (E5-15) - E1 (E5- 28)	Y - BR	Engine oil pressure	Power switch ON (IG), not engine running	9 to 14
WBAD (E7-20) - E1 (E5- 28)	R - BR	Water valve position signal	Power switch ON (IG)	0.3 to 4.7
THW2 (E7-33) - E2 (E4- 28)	W - BR	Coolant heat storage tank outlet temperature sensor	Power switch ON (IG), Coolant temperature at 80°C (176°F)	0.2 to 1.0
WSL1 (E7-24) - WSL2 (E7-23)	Y - V	Water valve motor	Changing valve position	Pulse generation
WPL (E7-15) - E1 (E5-28)	V - BR	CHS water pump	Pre-heat mode	0 to 2

Symbols (Terminal No.)	Wiring Color	Terminal Description	Condition	STD Voltage (V)
FAN (E7-8) - E1 (E5-28)	LG - BR	Cooling fan relay	Power switch ON (IG), Engine coolant temperature less than 94.5°C (202°F)	9 to 14
W (E6-18) - E1 (E5-28)	LG - BR	MIL	Idling (during inspection mode)	9 to 14
W (E6-18) - E1 (E5-28)	LG - BR	MIL	Power switch ON (IG)	Below 3.0
FC (E6-10) - E1 (E5-28)	G - BR	Fuel pump control	Power switch ON (IG)	9 to 14
FC (E6-10) - E1 (E5-28)	G - BR	Fuel pump control	Power switch ON (IG)	Below 3.0
TC (E6-14) - E1 (E5-28)	P - BR	Terminal TC of DLC3	Power switch ON (IG)	9 to 14
NEO (E7-1) - E1 (E5-28)	LG - BR	Revolution signal	Idling (during inspection mode)	Pulse generation
GO (E7-2) - E1 (E5-28)	Y - BR	Revolution signal	Idling (during inspection mode)	Pulse generation
CANH (E6-31) - E1 (E5- 28)	B - BR	CAN communication line	Power switch ON (IG)	Pulse generation
CANL (E6-30) - E1 (E5- 28)	W - BR	CAN communication line	Power switch ON (IG)	Pulse generation
VPMP (E7-26) - E1 (E5- 28)	V - BR	Vent valve (built into pump module)	Power switch ON (IG)	9 to 14
MPMP (E7-13) - E1 (E5- 28)	P - BR	Vacuum pump (built into pump module)	Vacuum pump OFF	0 to 3
MPMP (E7-13) - E1 (E5- 28)	P - BR	Vacuum pump (built into pump module)	Vacuum pump ON	9 to 14
PPMP (E7-30) - E1 (E5- 28)	L - BR	Pressure sensor (built into pump module)	Power switch ON (IG)	3 to 3.6

DIAGNOSIS SYSTEM

1. DESCRIPTION

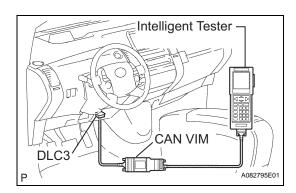
When troubleshooting On-Board Diagnostics (OBD II) vehicles, the intelligent tester (complying with SAE J1987) must be connected to the Data Link Connector 3 (DLC3) of the vehicle. Various data in the vehicle's Engine Control Module (ECM) can then be read. OBD II regulations require that the vehicle's on-board computer illuminates the Malfunction Indicator Lamp (MIL) on the instrument panel when the computer detects a malfunction in:

- (a) The emission control systems components
- (b) The power train control components (which affect vehicle emissions)

(c) The computer itself

In addition, the applicable Diagnostic Trouble Codes (DTCs) prescribed by SAE J2012 are recorded in the ECM memory. If the malfunction does not reoccur in 3 consecutive trips, the MIL turns off automatically but the DTCs remain recorded in the ECM memory.


To check the DTCs, connect the intelligent tester to the DLC3. The tester displays DTCs, freeze frame data, and a variety of engine data. The DTCs and freeze frame data can be erased with the tester. In order to enhance OBD function on vehicles and develop the Off-Board diagnosis system, the Controller Area Network (CAN) communication is used in this system. It minimizes the gap between technician skills and vehicle technology. CAN is a network which uses a pair of data transmission lines that span multiple ECUs and sensors. It allows high speed communication between the systems and simplifies the wire harness connections. The CAN Vehicle Interface Module (CAN VIM) must be connected with the intelligent tester to display any information from the ECM. The intelligent tester and ECM uses CAN communication signals to communicate. Connect the CAN VIM between the intelligent tester and DLC3.


2. NORMAL MODE AND CHECK MODE

The diagnosis system operates in normal mode during normal vehicle use. In normal mode, 2 trip detection logic is used to ensure accurate detection of malfunctions. Check mode is also available as an option for technicians. In check mode, 1 trip detection logic is used for simulating malfunction symptoms and increasing the system's ability to detect malfunctions, including intermittent problems (intelligent tester only).

3. 2 TRIP DETECTION LOGIC

When a malfunction is first detected, the malfunction is temporarily stored in the ECM memory (1st trip). If the same malfunction is detected during the next subsequent drive cycle, the MIL is illuminated (2nd trip).

4. FREEZE FRAME DATA

Freeze frame data records the engine conditions (fuel system, calculated engine load, engine coolant temperature, fuel trim, engine speed, vehicle speed, etc.) when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred. Priorities for troubleshooting:

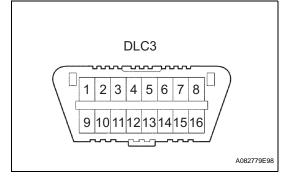
If troubleshooting priorities for multiple DTCs are given in the applicable DTC chart, these priorities should be followed.

If no instructions are given, perform troubleshooting for those DTCs according to the following priorities.

(a)DTCs other than fuel trim malfunction (DTCs P0171 and P0172) and misfire (P0300 to P0304).

(b)Fuel trim malfunction (DTCs P0171 and P0172). (c)Misfire (DTCs P0300 to P0304).

5. DATA LINK CONNECTOR 3 (DLC3)


The vehicle's ECM uses the ISO 15765-4 for communication protocol. The terminal arrangement of the DLC3 complies with SAE J1962 and matches the ISO 15765-4 format.

Symbols	Terminal No.	Names	Reference terminal	Results	Condition
SIL	7	Bus "+" line	5 - Signal ground	Pulse generation	During transmission
CG	4	Chassis ground	Body ground	1 Ω or less	Always
SG	5	Signal ground	Body ground	1 Ω or less	Always
BAT	16	Battery positive	Body ground	9 to 14 V	Always
CANH	6	CAN "High" line	CANL	54 to 69 Ω	Power switch OFF
CANH	6	CAN "High" line	Battery positive	1 M Ω or higher	Power switch OFF
CANH	6	CAN "High" line	CG	1 k Ω or higher	Power switch OFF
CANL	14	CAN "Low" line	Battery positive	1 M Ω or higher	Power switch OFF
CANL	14	CAN "Low" line	CG	1 k Ω or higher	Power switch OFF

If the result is not as specified, the DLC3 may have a malfunction. Repair or replace the harness and connector.

HINT:

When you use the intelligent tester or OBD scan tool, first connect its cable to the DLC3. Next, turn ON the main power of the PRIUS by pushing the power switch ON (IG). Finally turn the tester or the scan tool ON. If the screen displays UNABLE TO CONNECT TO VEHICLE, a problem exists in the vehicle side or the tester side. If communication is normal when the tester is connected to another vehicle, inspect the DLC3 of the original vehicle.

If communication is still not possible when the tester is connected to another vehicle, the problem may be in the tester itself. Consult the Service Department listed in the tester's instruction manual.

6. BATTERY VOLTAGE Battery Voltage: 11 to 14 V

If the voltage is below 11 V, recharge or replace the battery before proceeding.

7. MIL (Malfunction Indicator Lamp)

- (a) The MIL is illuminated when the power switch is first turned ON (the engine is not running).
- (b) When the HV main system is activated (READY ON), the MIL should turn off. If the MIL illuminates gain, the diagnosis system has detected malfunction or abnormality in the system.

HINT:

If the MIL is not illuminated when the power switch is first turned ON (IG), check the MIL circuit (see page ES-428).

8. ALL READINESS

For the vehicle, using the intelligent tester allows readiness codes corresponding to all DTCs to be read. When diagnosis (normal or malfunctioning) has been completed, readiness codes are set. Enter the following menus on the intelligent tester: ENHANCED OBD II / MONITOR STATUS.

DTC CHECK / CLEAR

NOTICE:

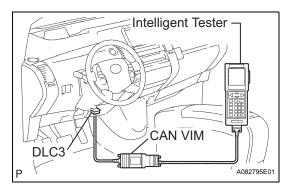
- If no DTC appears in normal mode: On the OBD II or intelligent tester, check the pending fault code using the Continuous Test Results function (Mode 7 for SAE J1979).
- When the diagnosis system is changed from normal mode to check mode or vice versa, all DTCs and freeze frame data recorded in normal mode are erased. Before changing modes, always check and make a note of DTCs and freeze frame data.

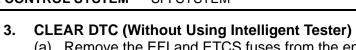
HINT:

- DTCs which are stored in the ECM can be displayed on the intelligent tester. The intelligent tester can display current and pending DTCs.
- Some DTCs are not set if the ECM does not detect the same malfunction again during a second consecutive driving cycle. However, malfunctions detected on only 1 occasion are stored as pending DTCs.

1. CHECK DTC (Using Intelligent Tester)

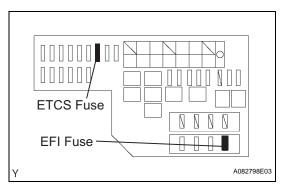
- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG) and turn the tester ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (d) Check the DTC(s) and freeze frame data, and then write them down.
- (e) Check the details of the DTC(s) (see page ES-42). **NOTICE:**


Turn the HV main system OFF (IG OFF) after the symptom is simulated once. Then repeat the simulation process again. When the problem has been simulated again, the MIL illuminates and the DTCs are recorded in the ECM.


2. CLEAR DTC (Using Intelligent Tester)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG) and turn the tester ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CLEAR CODES.
- (d) Press the YES button.

NOTICE:


Clearing the DTCs will also clear the freeze frame data, detailed information and operation history data.

NOTICE:

When disconnecting the battery cable, perform the "INITIALIZE" procedure (see page IN-32).

FREEZE FRAME DATA

DESCRIPTION

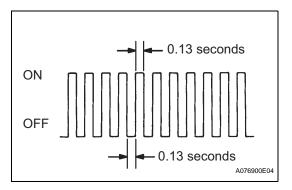
The freeze frame data records the engine condition (fuel system, calculated load, engine coolant temperature, fuel trim, engine speed, vehicle speed, etc.) when malfunction is detected. When troubleshooting, it can help determine if the vehicle was running or stopped, the engine was warmed up or not, the air-fuel ratio was LEAN or RICH and other data. at the time of the malfunction occurred.

If it is impossible to replicate the problem even though a DTC is detected, confirm the freeze frame data.

LABEL (Intelligent Tester Display)	Measure Item/Range	Diagnostic Note
CALC LOAD	Calculate load	Calculated load by ECM
COOLANT TEMP	Engine coolant temperature	If the value is -40°C, sensor circuit is open If the value is 140°C, sensor circuit is shorted
SHORT FT #1	Short-term fuel trim	Short-term fuel compensation used to maintain the air-fuel ratio at stoichiometric air-fuel ratio
LONG FT #1	Long-term fuel trim	Overall fuel compensation carried out in long- term to compensate a continual deviation of the short-term fuel trim from the central valve
ENGINE SPD	Engine speed	-
VEHICLE SPD	Vehicle speed	Speed indicated on speedometer
IGN ADVANCE	Ignition advance	-
INTAKE AIR	Intake air temperature	If the value is -40°C, sensor circuit is open If the value is 140°C, sensor circuit is shorted
MAF	Mass air flow volume	If the value is approximately 0.0 g/sec.: • Mass air flow meter power source circuit • VG circuit open or short If the value is 160.0 g/sec. or more: • E2G circuit open
THROTTLE POS	Throttle position	Read the value with the power switch ON (Do not start engine)
O2S B1 S2	Heated oxygen sensor output	Performing the INJ VOL or A/F CONTROL function of the ACTIVE TEST enables the technician to check voltage output of the sensor
02FT B1 S2	Fuel trim at heated oxygen sensor	Same as SHORT FT #1
ENG RUN TIME	Accumulated engine running time	-
AF FT B1 S1	Fuel trim at A/F sensor	-
AFS B1 S1	A/F sensor output	Performing the INJ VOL or A/F CONTROL function of the ACTIVE TEST enables the technician to check voltage output of the sensor
EVAP PURGE VSV	EVAP purge VSV duty ratio	-
DIST DTC CLEAR	Accumulated distance from DTC cleared	-
CAT TEMP B1 S1	Catalyst temperature	-
CAT TEMP B1 S2	Catalyst temperature	-
BATTERY VOLTAGE	Battery voltage	-
AIR-FUEL RATIO	Air-fuel ratio	-
THROTTLE POS	Throttle sensor positioning	Read the value with the power switch ON (Do not start engine)
AMBIENT TEMP	Ambient air temperature	If the value is -40°C, sensor circuit is open If the value is 140°C, sensor circuit is shorted

LABEL (Intelligent Tester Display)	Measure Item/Range	Diagnostic Note
THROTTLE POS #2	Throttle sensor positioning #2	-
THROTTLE MOT	Throttle motor	-
TIME DTC CLEAR	Cumulative time after DTC cleared	-
KNOCK CRRT VAL	Correction learning value of knocking	-
KNOCK FB VAL	Feedback value of knocking	-
PURGE DENSITY	Learning value of purge density	-
EVAP PURGE FLOW	Purge flow	-
FC IDL	Idle fuel cut	ON: when throttle valve fully closed and engine speed is over 1,500 rpm
FC TAU	FC TAU	The fuel cut is being performed under very light load to prevent the engine combustion from becoming incomplete
VVTL AIM ANGL #1	VVT aim angle	-
VVT CHNG ANGL #1	VVT change angle	-
VVT OCV DUTY B1	VVT OCV operation duty	-
INI COOL TEMP	Initial engine coolant temperature	-
INI INTAKE TEMP	Initial intake air temperature	-
INJ VOL	Injection volume	-
INJECTOR	Injector	-
TOTAL FT #1	Total fuel trim	-
MISFIRE RPM	Misfire RPM	-
MISFIRE LOAD	Misfire load	-
CYL #1	Cylinder #1 misfire rate	Displayed in only idling
CYL #2	Cylinder #2 misfire rate	Displayed in only idling
CYL #3	Cylinder #3 misfire rate	Displayed in only idling
CYL #4	Cylinder #4 misfire rate	Displayed in only idling
CYL ALL	All cylinder misfire rate	Displayed in only idling
IGNITION	Ignition	-
MISFIRE MARGIN	Misfire monitoring	-
ENG OIL PRES SW	Engine oil pressure switch signal	Always ON while engine is running

DLC3


CHECK MODE PROCEDURE

HINT:

Intelligent tester only:

Compared to normal mode, check mode has more sensing ability to detect malfunction. Furthermore, the same diagnostic items which are detected in normal mode can also be detected in check mode.

- 1. CHECK MODE PROCEDURE (Using Intelligent Tester)
 - (a) Check the initial conditions.
 - (1) Battery positive voltage 11 V or more
 - (2) Throttle valve fully closed
 - (3) Shift position in the P or N
 - (4) A/C switched OFF
 - (b) Connect the intelligent tester to the DLC3.
 - (c) Turn the power switch ON (IG).

Intelligent Tester -

CAN VIM

A082795E01

 (d) Change the ECM to check mode using the intelligent tester. Make sure the MIL flashes as shown in the illustration.
 NOTICE:

All DTCs and freeze frame data recorded will be erased if: 1) the intelligent tester is used to change the ECM from normal mode to check mode or vice-versa, or 2) during check mode, the power switch is switched from ON (IG) to ON (ACC) or OFF.

- (e) Start the HV main system (READY ON). The MIL should turn off after the system starts.
- (f) Simulate the condition of the malfunction described by the customer.
- (g) After simulating the malfunction conditions, check DTCs, freeze frame data and other data using the tester.
- (h) After checking DTCs, inspect applicable circuits.

FAIL-SAFE CHART

If any of the following codes are recorded, the ECM enters fail-safe mode.

DTC No.	Fail-safe Operation	Fail-safe Deactivation Conditions
P0031 P0032 P0037 P0038	Heater is turned OFF	Power switch OFF
P0100 P0102 P0103	Ignition timing is calculated from engine speed and throttle angle	"Pass" condition detected
P0110 P0112 P0113	Intake air temperature is fixed at 20°C (68°F)	"Pass" condition detected
P0115 P0117 P0118	Engine coolant temperature is fixed at 80°C (176°F)	"Pass" condition detected
P0120 P0122 P0123	Fuel cut intermittently and drive on motor mode	Power switch OFF
P0121	Fuel cut intermittently and drive on motor mode	Power switch OFF
P0325	Maximum ignition timing retardation	Power switch OFF
P0351 P0352 P0353 P0354	Fuel cut and drive on motor mode	Power switch OFF
P0657	VTA is fixed at about 16% and fuel cut intermittently and drive on motor mode	Power switch OFF
P1115 P1117 P1118	Engine coolant temperature is fixed at 80°C (176°F)	"Pass" condition detected
P1120 P1122 P1123	Water valve position is fixed at position when DTC is detected	"Pass" condition detected
P2102 P2103	VTA is fixed at about 16% and fuel cut intermittently	Power switch OFF
P2119	VTA is fixed at about 16% and fuel cut intermittently	"Pass" condition detected and power switch OFF
P3190 P3191 P3193	Drive on motor mode	Power switch OFF

DATA LIST / ACTIVE TEST

1. DATA LIST

HINT:

Using the intelligent tester DATA LIST allows switch, sensor, actuator and other item values to be read without removing any parts. Reading DATA LIST early in troubleshooting is one way to shorten labor time. **NOTICE:**

In the table below, the values listed under "Normal Condition" are reference values. Do not depend solely on these reference values when deciding whether a part is faulty or not.

- (a) Turn the power switch ON (READY) and warm up the engine.
- (b) Turn the power switch OFF.
- (c) Connect the intelligent tester to the DLC3.
- (d) Turn the power switch ON (IG).
- (e) Turn the intelligent tester ON.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST.
- (g) According to the display on the tester, read items in DATA LIST.

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
INJECTOR	Injection period of the No. 1 cylinder/ Min.: 0 ms, Max.: 32.64 ms	Idling: 1 to 3 ms (Inspection mode)	-
IGN ADVANCE	Ignition timing advance for No. 1 cylinder/ Min.: -64 deg., Max.: 63.5 deg.	Idling: BTDC 7 to 15° (Inspection mode)	-
CALC LOAD	Calculated load by ECM/ Min.: 0%, Max.: 100%	 Idling: 10 to 20% (Inspection mode) Running without load (1,500 rpm): 10 to 20% 	-
VEHICLE LOAD	Vehicle load: Min.: 0 %, Max.: 25,700 %	Actual vehicle load	-
MAF	Air flow rate from MAF meter/ Min.: 0 g/sec., Max.: 655.35 g/ sec.	Idling: 3 to 7 g/sec. (1,500 rpm)	 If the value is approximately 0.0 g/sec.: Mass air flow meter power source circuit open VG circuit open or short If the value is 160.0 g/sec. or more: E2G circuit open
ENGINE SPD	Engine speed/ Min.: 0 rpm, Max.: 16,383 rpm	Idling 1,000 rpm (when putting the engine in inspection mode)	-
VEHICLE SPD	Vehicle speed/ Min.: 0 km/h, Max.: 255 km/h	Actual vehicle speed	Speed indicated on speedometer
COOLANT TEMP	Engine coolant temperature/ Min.: -40°C, Max.: 140°C	After warming up: 80 to 100°C (176 to 212°F)	 If the value is -40°C (-40°F): sensor circuit is open If the value is 140°C (284°F): sensor circuit is shorted
INTAKE AIR	Intake air temperature/ Min.: -40°C, Max.: 140°C	Equivalent to ambient air temperature	 If the value is -40°C (-40°F): sensor circuit is open If the value is 140°C (284°F): sensor circuit is shorted
AIR-FUEL RATIO	Air-fuel ratio: Min.: 0, Max.: 1.999	During idling: 1,500 rpm 0.8 to 1.2	-

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
AMBIENT TEMP	Ambient air temperature/ Min.: -40°C, Max.: 215°C	Equivalent to ambient air temperature	 If the value is -40°C: sensor circuit is open If the value is 215°C: sensor circuit is shorted
PURGE DENSITY	Learning value of purge density/ Min.: -50, Max.: 350	-40 to 0% Idling (Inspection mode)	Service data
EVAP PURGE FLOW	Purge flow/ Min.: 0%, Max.: 102.4%	Idling: 0 to 100%	-
EVAP PURGE VSV	EVAP (Purge) VSV control duty/ Min.: 0%, Max.: 100%	0 to 100% During idling: 1,500 rpm	Order signal from ECM
VAPOR PRES TANK	Vapor pressure/ Min.: -4.125 kPa, Max.: 2.125 kPa	Fuel tank cap removed: 0 kPa	Pressure inside fuel tank is monitored by the vapor pressure sensor
VAPOR PRES PUMP	Vapor pressure: Min.: 33.853 kPa, Max.: 125.596 kPa	Approximately 100 kPa: Power switch ON (IG)	EVAP system pressure monitored by canister pressure sensor
VAPOR PRES CALC	Vapor pressure (calculated): Min.: -5.632 kPa, Max.: 715.264 kPa	Approximately 100 kPa: Power switch ON (IG)	EVAP system pressure monitored by canister pressure sensor
KNOCK CRRT VAL	Correction learning value of knocking/ Min.: -64 CA, Max.: 1,984 CA	0 to 22°CA Driving: 70 km/h (44 mph)	Service data
KNOCK FB VAL	Feedback value of knocking/ Min.: -64 CA, Max.: 1,984 CA	-22 to 0°CA Driving: 70 km/h (44 mph)	Service data
CLUTCH	Clutch current: Min.: 0 A, Max.: 2.49 A	-	-
ETCS MAG CLUTCH	Electromagnetic Clutch: ON or OFF	-	-
ACCEL IDL POS	Whether or not accelerator pedal position sensor is detecting idle/ ON or OFF	Idling: ON (inspection mode)	-
THRTL LEARN VAL	Throttle valve fully closed (learned value) Min.: 0 V, Max.: 5 V	0.4 to 0.8 V	-
FAIL #1	Whether or not fail safe function is executed/ ON or OFF	ETCS has failed: ON	-
FAIL #2	Whether or not fail safe function is executed/ ON or OFF	ETCS has failed: ON	-
ST1	Starter signal/ ON or OFF	Cranking: ON	-
SYS GUARD JUDGE	System guard/ ON or OFF	-	ETCS service data
OPN MALFUNCTION	Open side malfunction/ ON or OFF	-	ETCS service data
THROTTLE POS	Absolute throttle position sensor/ Min.: 0%, Max.: 100%	 Throttle fully closed: 10 to 24% Throttle fully open: 64 to 96% 	Read the value with intrusive operation (active test)
THROTTL IDL POS	Whether or not throttle position sensor is detecting idle/ ON or OFF	Idling: ON (inspection mode)	-
THRTL REQ POS	Throttle requirement position/ Min.: 0 V, Max.: 5 V	Idling: 0.5 to 1.0 V (Inspection mode)	-
THROTTLE POS	Throttle sensor positioning/ Min.: 0%, Max.: 100%	Idling 10 to 18% (Inspection mode)	Calculated value based on VTA1
THROTTLE POS #2	Throttle sensor positioning #2/ Min.: 0%, Max.: 100%	-	Calculated value based on VTA2
THROTTLE POS #1	Throttle position sensor No. 1 output voltage/ Min.: 0 V, Max.: 4.98 V	-	ETCS service data

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
THROTTLE POS #2	Throttle position sensor No.2 output voltage/ Min.: 0 V, Max.: 4.98 V	-	ETCS service data
THROTTLE POS #1	Throttle position No. 1/ Min.: 0 V, Max.: 5 V	 Throttle fully closed: 0.5 to 1.2 V Throttle fully opened : 3.2 to 4.8 V 	-
THROTTLE POS #2	Throttle position No. 2/ Min.: 0 V, Max.: 5 V	 Throttle fully closed: 2.0 to 2.9 V Throttle fully open: 4.6 to 5.5 V 	Read the value with intrusive operation (active test)
THRTL COMND VAL	Throttle position command value/ Min.: 0 V, Max.: 4.98 V	0.5 to 4.8 V	ETCS service data
THROTTLE SSR #1	Throttle sensor opener position No. 1/ Min.: 0 V, Max.: 4.98 V	0.6 to 0.9 V	ETCS service data
THROTTLE SSR #2	Throttle sensor opener position No. 2/ Min.: 0 V, Max.: 4.98 V	2.2 to 2.6 V	ETCS service data
THRTL SSR #1 AD	Throttle sensor opener position No.1 (AD)/ Min.: 0 V, Max.: 4.98 V	0.6 to 0.9 V	ETCS service data
THROTTLE MOT	Whether or not throttle motor control is permitted/ ON or OFF	Idling: ON (Inspection mode)	Read the value with the power switch ON (Do not start engine)
THROTTLE MOT	Throttle motor current Min.: 0 A, Max.: 80 A	Idling: 0 to 3.0 A (Inspection mode)	-
THROTTLE MOT	Throttle motor Min.: 0%, Max.: 100%	Idling: 0.5 to 40% (Inspection mode)	-
THROTTLE MOT	Throttle motor current Min.: 0 A, Max.: 19.92 A	Idling: 0 to 3.0 A	-
THROTL OPN DUTY	Throttle motor opening duty ratio/ Min.: 0%, Max.: 100%	During idling: 0 to 40%	When accelerator pedal is depressed, duty ratio is increased
THROTL CLS DUTY	Throttle motor closed duty ratio/ Min.: 0%, Max.: 100%	During idling: 0 to 40%	When accelerator pedal is released quickly, duty ratio is increased
THRTL MOT (OPN)	Throttle motor duty ratio (open)/ Min.: 0%, Max.: 100%	-	ETCS service data
THRTL MOT (CLS)	Throttle motor duty ratio (close)/ Min.: 0%, Max.: 100%	-	ETCS service data
O2S B1 S2	Heated oxygen sensor output voltage for bank 1 sensor 2/ Min.: 0 V, Max.: 1.275 V	Driving: 70 km/h (44 mph) 0.1 to 0.9 V	Performing the INJ VOL or A/F CONTROL function of the ACTIVE TEST enables the technician to check voltage output of the sensor
AFS B1 S1	A/F sensor output voltage for bank 1 sensor 1/ Min.: 0 V, Max.: 7.999 V	Idling 2.8 to 3.8 V (Inspection mode)	Performing the INJ VOL or A/F CONTROL function of the ACTIVE TEST enables the technician to check voltage output of the sensor
TOTAL FT #1	Total fuel trim of bank 1: Average value for fuel trim system of bank 1/ Min.: -0.5, Max.: 0.496	Idling: -0.2 to 0.2 (Inspection mode)	-
SHORT FT #1	Short-term fuel trim of bank 1/ Min.: -100%, Max.: 99.2%	0 +- 20%	This item is the short-term fuel compensation used to maintain the air-fuel ratio at stoichiometri air-fuel ratio

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
LONG FT #1	Long-term fuel trim of bank 1/ Min.: -100%, Max.: 99.2%	0 +- 20%	This item is the overall fuel compensation carried out in long- term to compensate a continual deviation of the short-term fuel trim from the central value
FUEL SYS #1	Fuel system status (Bank1) / OL or CL or OL DRIVE or OL FAULT or CL FAULT	Idling after warming up: CL (Inspection mode)	 OL (Open Loop): Has not yet satisfied conditions to go closed loop CL (Closed Loop): Using heated oxygen sensor as feedback for fuel control OL DRIVE: Open loop due to driving conditions (fuel enrichment) OL FAULT: Open loop due to detected system fault CL FAULT: Closed loop but heated oxygen sensor, which is used for fuel control is malfunctioning
O2FT B1 S2	Short-term fuel trim associated with the bank 1 sensor 2/ Min.: -100%, Max.: 99.2%	0 +- 20%	Same as SHORT FT #1
AF FT B1 S1	Short-term fuel trim associated with the bank 1 sensor 1/ Min.: 0, Max.: 1.999	 Value less than 1 (0.000 to 0.999) = Lean Stoichiometric air-fuel ratio = 1 Value greater than 1 (1.001 to 1.999) = RICH 	-
CAT TEMP B1S1	Catalyst temperature (Bank 1, Sensor 1)/ Min.: -40°C, Max.: 6,513.5°C	-	-
CAT TEMP B1S2	Catalyst temperature (Bank 1, Sensor 2)/ Min.: -40°C, Max.: 6,513.5°C	-	-
S O2S B1S2	Sub O2S Impedance B1S2: Min.:0 Ω, Max.:21247.68 Ω	5 to 15,000 Ω	-
INI COOL TEMP	Initial engine coolant temperature/ Min.: -40°C, Max.: 120°C	Close to ambient air temperature	Service data
INI INTAKE TEMP	Initial intake air temperature/Min.: -40°C, Max.: 120°C	Close to ambient air temperature	Service data
INJ VOL	Injection volume (cylinder 1)/ Min.: 0 ml, Max.: 2.048 ml	0 to 0.5 ml	Quantity of fuel injection volume for 10 times
CTP SW	Closed Throttle Position Switch: ON or OFF	ON: Throttle fully closedOFF: Throttle open	-
ENG OIL PRES SW	Engine oil pressure switch signal/ 0: OFF / 1: ON	Indicating ON while engine is running	-
+BM	Whether or not electric throttle control system power is inputted/ ON or OFF	Idling: ON (inspection mode)	-
+BM VOLTAGE	+BM voltage/ Min.: 0, Max.: 19.92	Idling: 10 to 15 V	ETCS service data
BATTERY VOLTAGE	Battery voltage/ Min.: 0 V, Max.: 65.535 V	Idling: 9 to 14 V (Inspection mode)	-
ACTUATOR POWER	Actuator power supply/ ON or OFF	Idling ON (Inspection mode)	ETCS service data
EVAP (Purge) VSV	VSV status for EVAP control/ ON or OFF	VSV operating: ON	VSV for EVAP is controlled by the ECM (ground side duty control)
FUEL PUMP / SPD	Fuel pump/speed status/ ON or OFF	Idling: ON (Inspection mode)	-

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
VVT CTRL B1	VVT control status/ ON or OFF	-	Support for VVT active test
VACUUM PUMP	Key-off EVAP system leak detection pump status: ON or OFF	-	Active Test support data
EVAP VENT VAL	Key-off EVAP system vent valve status: ON or OFF	-	Active Test support data
FAN MOTOR	Electric fan motor: ON or OFF	-	Support for fan motor active test
TANK BYPASS VSV	Tank bypass VSV: ON or OFF	-	Support for tank bypass VSV active test
TC/TE1	TC and TE1 terminal of DLC3: ON or OFF	-	-
VVTL AIM ANGL #1	VVT aim angle (bank 1): Min.: 0%, Max.: 100%	Idling: 0%	VVT duty signal value during intrusive operation
VVT CHNG ANGL #1	VVT change angle: Min.: 0°FR, Max.: 60°FR	Idling: 0 to 5 °FR	Displacement angle during intrusive operation
VVT OCV DUTY B1	VVT OCV operation duty: Min.: 0%, Max.:100%	Idling: 0%	Requested duty value for intrusive operation
FC IDL	Fuel cut idle: ON or OFF	Fuel cut operation: ON	FC IDL = "ON" when throttle valve fully closed and engine speed is over 2,800 rpm
FC TAU	Fuel cut TAU: Fuel cut during very light load: ON or OFF	Fuel cut operating: ON	The fuel cut is being performed under very light load to prevent the engine combustion from becoming incomplete
IGNITION	Ignition counter: Min.: 0, Max.: 800	0 to 800	-
CYL #1, #2, #3, #4	Misfire ratio of the cylinder 1 to 4: Min.: 0, Max.: 255	0%	This item is displayed in only idling
CYL ALL	All cylinders misfire rate: Min.: 0, Max.: 255	0 to 35	-
MISFIRE RPM	Engine RPM for first misfire range: Min.: 0 rpm, Max.: 6,375 rpm	Misfire 0: 0 rpm	-
MISFIRE LOAD	Engine load for first misfire range: Min.: 0 g/rev, Max.: 3.98 g/rev	Misfire 0: 0 g/rev	-
MISFIRE MARGIN	Misfire monitoring: MIn.: -100%, Max.: 99.22%	-100 to 99.2%	Misfire detecting margin
#CODES	#Codes: Min.: 0, Max.: 255	-	Number of detected DTCs
CHECK MODE	Check mode: ON or OFF	Check mode ON: ON	(see page ES-32)
MISFIRE TEST	Check mode result for misfire monitor: COMPL or INCMPL	-	-
OXS1 TEST	Check mode result for HO2 sensor: COMPL or INCMPL	-	-
A/F SSR TEST B1	Check mode result for air-fuel ratio sensor: COMPL or INCMPL	-	-
MIL	MIL status: ON or OFF	MIL ON: ON	-
MIL ON RUN DIST	MIL ON Run Distance: Min.: 0 second, Max.: 65,535 seconds	Distance after DTC is detected	-

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
MIL ON RUN TIME	Running time from MIL ON: Min.: 0 minute, Max.: 65,535 minutes	Equivalent to running time after MIL was ON	-
ENG RUN TIME	Engine run time: Min.: 0 second, Max.: 65,535 seconds	Time after engine start	Service data
TIME DTC CLEAR	Time after DTC cleared: Min.: 0 minute, Max.: 65,535 minutes	Equivalent to time after DTCs were erased	-
DIST DTC CLEAR	Distance after DTC cleared: Min.: 0 km/h, Max.: 65535 km/h	Equivalent to drive distance after DTCs were erased	-
WU CYC DTC CLEAR	Warm-up cycle after DTC cleared: Min.: 0, Max.: 255	-	Number of warm-up cycles after DTC is cleared
OBD CERT	OBD requirement	OBD2	-
#CARB CODES	Emission related DTCs	-	Number of emission related DTCs
COMP MON	Comprehensive component monitor: NOT AVL or AVAIL	•	-
FUEL MON	Fuel system monitor: NOT AVL or AVAIL	-	-
MISFIRE MON	Misfire monitor: NOT AVL or AVAIL	-	-
O2S (A/FS) MON	O2S (A/FS) heater monitor: NOT AVL or AVAIL	-	-
O2S (A/FS) MON	O2S (A/FS) heater monitor: COMPL or INCMPL	-	-
EVAP MON	EVAP monitor: NOT AVL or AVAIL	-	-
EVAP MON	EVAP monitor: COMPL or INCMPL	-	-
CAT MON	Catalyst monitor: NOT AVL or AVAIL	-	-
CAT MON	Catalyst monitor: COMPL or INCMPL	-	-
CCM ENA	Comprehensive component monitor: UNABLE or ENABLE	-	-
CCM CMPL	Comprehensive component monitor: COMPL or INCMPL	•	-
FUEL ENA	Fuel system monitor: UNABLE or ENABLE	-	-
FUEL CMPL	Fuel system monitor: COMPL or INCMPL	-	-
MISFIRE ENA	Misfire monitor: UNABLE or ENABLE	-	-
MISFIRE CMPL	Misfire monitor: COMPL or INCMPL	-	-
EGR ENA	EGR Monitor: UNABLE or ENABLE	-	-
EGR CMPL	EGR Monitor: COMPL or INCMPL	-	-
HTR ENA	O2S (A/FS) heater monitor: UNABLE or ENABLE	-	-

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
HTR CMPL	O2S (A/FS) heater monitor: COMPL or INCMPL	-	-
O2S (A/FS) ENA	O2S (A/FS) monitor: UNABLE or ENABLE	-	-
O2S (A/FS) CMPL	O2S (A/FS) monitor: COMPL or INCMPL	-	-
ACRF ENA	A/C Monitor: UNABLE or ENABLE	-	-
ACRF CMPL	A/C Monitor: COMPL or INCMPL	-	-
AIR ENA	2nd Air Monitor: UNABLE or ENABLE	-	-
AIR CMPL	2nd Air Monitor: COMPL or INCMPL	-	-
EVAP ENA	EVAP monitor: UNABLE or ENABLE	-	-
EVAP CMPL	EVAP monitor: COMPL or INCMPL	-	-
HCAT ENA	Heated Catalyst Monitor: UNABLE or ENABLE	-	-
HCAT CMPL	Heated Catalyst Monitor: COMPL or INCMPL	-	-
CAT ENA	Catalyst monitor: UNABLE or ENABLE	-	-
CAT CMPL	Catalyst monitor: COMPL or INCMPL	-	-
CYLINDER NUMBER	Cylinder number: Min.: 0, Max.: 255	-	Identifying the cylinder number
MODEL YEAR	Model year: Min.: 0, Max.: 255	-	Identifying the model year
REQ ENG TRQ	Requested engine torque: Min.: 0 kW, Max.: 16383.75 kW	0 to 57 kW	Flag information for hybrid vehicle
HV TRGT ENG SPD	HV target engine speed: Min.: 0 rpm, Max.: 6375 rpm	0 to 5000 rpm	Flag information for hybrid vehicle
ACT ENGINE TRQ	Actual engine torque: Min.: -128 Nm, Max.: 127 Nm	-128 to 127 Nm	Flag information for hybrid vehicle
EST ENGINE TRQ	Estimated engine torque: Min.: 0 Nm, Max.: 510 Nm	0 to 120 Nm	Flag information for hybrid vehicle
ENG RUN TIME	Engine run time: Min.: 0 second, Max.: 255 seconds	0 to 255 seconds	Flag information for hybrid vehicle
ENGINE RUN TIME	Request engine run time: Min.: 0 second, Max.: 25.5 seconds	0 to 25.5 seconds	Flag information for hybrid vehicle
IGNITION TIME	Judgment time for ignition of engine: Min.: 0 second, Max.: 25.5 seconds	0 to 25.5 seconds	Flag information for hybrid vehicle
OUTPUT TIME	Judgment time for engine output: Min.: 0 second, Max.: 25.5 seconds	0 to 25.5 seconds	Flag information for hybrid vehicle
EST PORT TEMP	Estimated intake port temperature: Min.: -40°C, Max.: 215°C	80 to 100°C	Flag information for hybrid vehicle
FUEL LEVEL	Fuel level: EMPTY or NOT EMP	-	Flag information for hybrid vehicle
ISC LEARNING	ISC Learning: COMPL or INCMPL	-	-

Intelligent tester Display	Measurement Item/Range (Display)	Normal Condition*	Diagnostic Note
FUEL CUT	Fuel cut for engine stop request: OFF or ON	-	Flag information for hybrid vehicle
INDPNDNT OPR	Engine independently operation: NOT OPR or OPERATE	-	Flag information for hybrid vehicle
RACING	Rev-up operation: NOT OPR or OPERATE	-	Flag information for hybrid vehicle
WARM UP	Request warm-up: NOT REQ or REQUEST	-	Flag information for hybrid vehicle
INDPNDNT CNTRL	Engine independently control operation: NOT OPR or OPERATE	-	Flag information for hybrid vehicle
TANK WATER TEMP	CHS tank outlet temperature sensor output: Max: 215°C, Min: -40°C	-	 If the value is -40°C: sensor circuit is open If the value is 215°C: sensor circuit is shorted
WATER FLW VLV	Water valve position signal: Max: 4.98 V, Min: 0 V	0.45 to 4.6 V	Voltage varies based on valve position
ISC LEARN VAL	ISC learning value: Max: 19.92 L/s, Min: 0 L/s	-	Flag information for hybrid vehicle
DIRECT VAL 1	Direction Val Heat Storage 3 way valve (ctrl side): Max: 5 V, Min: 0 V	2.5 to 4.5 V	-
DIRECT VAL 2	Direction Val Heat Storage 3 way valve (OBD side): Max: 5 V, Min: 0 V	2.5 to 4.5 V	-
MODEL CODE	Identifying model code	NHW20#	-
ENGINE TYPE	Identifying engine type	1NZFXE	-
CYLINDER NUMBER	Identifying cylinder number: Min.: 0, Max.: 255	4	-
MODEL YEAR	Identifying model year: Min.: 1900, Max.: 2155	200#	-
SYSTEM	Identifying engine system	HV	-
· · · · · · · · · · · · · · · · · · ·	•	•	•

HINT:

*: If no condition is specifically stated for "Idling", it means the transaxle position is in the N or P, the A/C switch is OFF and all accessory switches are OFF.

2. ACTIVE TEST

HINT:

Performing ACTIVE TEST using the intelligent tester or the OBD II scan tool allows the relay, VSV, actuator and so on to operate without parts removal. Performing ACTIVE TEST as a first step of troubleshooting is one method to shorten diagnostic time.

It is possible to display DATA LIST during ACTIVE TEST.

- (a) Turn the power switch ON (READY) and warm up the engine.
- (b) Turn the power switch OFF.
- (c) Connect the intelligent tester to the DLC3.
- (d) Turn the power switch ON (IG).
- (e) Turn the intelligent tester ON.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST.
- (g) According to the display on the tester, perform items in ACTIVE TEST.

Intelligent Tester Display	Test Details	Diagnostic Note
INJ VOL	[Test Details] Control the injection volume Min.: -12.5%, Max.: 24.8% [Vehicle Condition] Engine speed: 3,000 rpm or less	 All injectors are tested at once Injection volume is gradually changed between -12 and 25%
A/F CONTROL	[Test Details] Control the injection volume -12.5 or 24.8% (Change the injection volume 12.5 % or 25%) [Vehicle Condition] Engine speed: 3,000 rpm or less	The following A/F CONTROL procedure enables the technician to check and graph the voltage outputs of both the A/F sensor and heated oxygen sensor To display the graph, enter ACTIVE TEST / A/ F CONTROL / USER DATA, then select "AFS B1S1 and O2S B1S2" or "AFS B2S1 and O2S B2S2" by pressing "YES" button and followed by "ENTER" button and then pressing "F4" button
EVAP VSV (ALONE)	[Test Details] Activate the VSV for EVAP control ON or OFF	(See page ES-207)
TANK BYPASS VSV	[Test Details] Activate the VSV for tank bypass ON or OFF	(See page ES-231)
VVT CTRL B1	[Test Details] Activate the VVT system (Bank 1) ON or OFF	 ON: Rough idle or engine stall OFF: Normal engine speed (See page ES-55)
FUEL PUMP / SPD	[Test Details] Control the fuel pump ON or OFF	-
TC/TE1	[Test Details] Connect the TC and TE1 ON or OFF	-
FC IDL PROHBT	[Test Details] Control the idle fuel cut prohibit ON or OFF	-
COOLING FAN	[Test Details] Control the electric cooling fan ON or OFF	-
ETCS OPEN/CLOSE SLOW	[Test Details] Control the ETCS opening/closing slow speed ON or OFF	Throttle valve intrusive operation
ETCS OPEN/CLOSE FAST	[Test Details] Control the ETCS opening/closing fast speed ON or OFF	Throttle valve intrusive operation
FUEL CUT #1	[Test Details] Control the cylinder #1 fuel cut ON or OFF (Inspection mode)	Cylinder No. 1 fuel cut for power balance
FUEL CUT #2	[Test Details] Control the cylinder #2 fuel cut ON or OFF (Inspection mode)	Cylinder No. 2 fuel cut for power balance
FUEL CUT #3	[Test Details] Control the cylinder #3 fuel cut ON or OFF (Inspection mode)	Cylinder No. 3 fuel cut for power balance
FUEL CUT #4	[Test Details] Control the cylinder #4 fuel cut ON or OFF (Inspection mode)	Cylinder No. 4 fuel cut for power balance
VVT B1	[Test Details] Control the VVT (bank 1) Min.: -128%, Max.: 127%	-
WATER PUMP	[Test Details] Activate the water pump ON or OFF	Coolant heat storage water pump

Intelligent Tester Display	Test Details	Diagnostic Note
WATER FLW VLV1	[Test Details] Activate the water valve ON or OFF	Unused
WATER FLW VLV2	[Test Details] Activate the water valve ON or OFF	Unused
WATER FLW VLV3	[Test Details] Activate the water valve ON or OFF	Water valve intrusive valve operation (position when engine is in pre-heat mode) (See page ES-304)
WATER FLW VLV4	[Test Details] Activate the water valve ON or OFF	Water valve intrusive valve operation (position when hot coolant recovering) (See page ES-304)
WATER FLW VLV5	[Test Details] Activate the water valve ON or OFF	Water valve intrusive valve operation (position when engine is in normal operation) (See page ES-304)
VACUUM PUMP	[Test Details] Activate the leak detection pump ON or OFF	-
VENT VALVE	[Test Details] Activate the vent valve ON or OFF	-

DIAGNOSTIC TROUBLE CODE CHART

HINT:

Parameters listed in the chart may be different than your readings depending on the type of instrument and other factors.

If any DTCs are displayed during a check mode DTC check, check the circuit for the DTCs listed in the table below. For details of each DTC, refer to the page indicated.

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0010	Camshaft Position "A" Actuator Circuit (Bank 1)	 Open or short in oil control valve circuit Oil control valve ECM 	Come on	DTC Stored	ES-55
P0011	Camshaft Position "A" - Timing Over- Advanced or System Performance (Bank 1)	 Valve timing Oil control valve Camshaft timing gear assembly ECM 	Come on	DTC Stored	ES-59
P0012	Camshaft Position "A" - Timing Over- Retarded (Bank 1)	- Same as DTC P0011	Come on	DTC Stored	ES-59
P0016	Crankshaft Position - Camshaft Position Correlation (Bank 1 Sensor A)	- Mechanical system (timing chain has jumped a tooth, chain stretched) - ECM	Come on	DTC Stored	ES-63
P0031	Oxygen (A/F) Sensor Heater Control Circuit Low (Bank 1 Sensor 1)	 Open or short in heater circuit of A/F sensor A/F sensor heater EFI M relay (Integration relay) ECM 	Come on	DTC Stored	ES-65
P0032	Oxygen (A/F) Sensor Heater Control Circuit High (Bank 1 Sensor 1)	 Short in heater circuit of A/F sensor A/F sensor heater EFI M relay (Integration relay) ECM 	Come on	DTC Stored	ES-65
P0037	Oxygen Sensor Heater Control Circuit Low (Bank 1 Sensor 2)	 Open or short in heater circuit of the heated oxygen sensor Heated oxygen sensor heater EFI M relay (integration relay) ECM 	Come on	DTC Stored	ES-70
P0038	Oxygen Sensor Heater Control Circuit High (Bank 1 Sensor 2)	 Short in heater circuit of the heated oxygen sensor Heated oxygen sensor heater EFI M relay (integration relay) ECM 	Come on	DTC Stored	ES-70
P0100	Mass or Volume Air Flow Circuit	 Open or short in mass air flow meter circuit Mass air flow meter ECM 	Come on	DTC Stored	ES-76

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0101	Mass Air Flow Circuit Range / Performance Problem	- Mass air flow meter	Come on	DTC Stored	ES-83
P0102	Mass or Volume Air Flow Circuit Low Input	- Open in mass air flow meter circuit - Mass air flow meter - ECM	Come on	DTC Stored	ES-76
P0103	Mass or Volume Air Flow Circuit High Input	 Short in mass air flow meter circuit Mass air flow meter ECM 	Come on	DTC Stored	ES-76
P0110	Intake Air Temperature Circuit	 Open or short in intake air temperature sensor circuit Intake air temperature sensor (built in mass air flow meter) ECM 	Come on	DTC Stored	ES-85
P0112	Intake Air Temperature Circuit Low Input	 Short in intake air temperature sensor circuit Intake air temperature sensor (built in mass air flow meter) ECM 	Come on	DTC Stored	ES-85
P0113	Intake Air Temperature Circuit High Input	Open in intake air temperature sensor circuit Intake air temperature sensor (built in mass air flow meter) ECM	Come on	DTC Stored	ES-85
P0115	Engine Coolant Temperature Circuit	 Open or short in engine coolant temperature sensor circuit Engine coolant temperature sensor ECM 	Come on	DTC Stored	ES-91
P0116	Engine Coolant Temperature Circuit Range / Performance Problem	- Engine coolant temperature sensor	Come on	DTC Stored	ES-97
P0117	Engine Coolant Temperature Circuit Low Input	 Short in engine coolant temperature sensor circuit Engine coolant temperature sensor ECM 	Come on	DTC Stored	ES-91
P0118	Engine Coolant Temperature Circuit High Input	Open in engine coolant temperature sensor circuit Engine coolant temperature sensor - ECM	Come on	DTC Stored	ES-91

ES-51

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0120	Throttle Pedal Position Sensor / Switch "A" Circuit Malfunction	 Open or short in throttle position sensor circuit Throttle position sensor (built in throttle body) ECM 	Come on	DTC Stored	ES-100
P0121	Throttle / Pedal Position Sensor / Switch "A" Circuit Range / Performance Problem	- Throttle position sensor (built in throttle body)	Come on	DTC Stored	ES-107
P0122	Throttle / Pedal Position Sensor / Switch "A" Circuit Low Input	Throttle position sensor Open in VTA1 circuit Open in VC circuit (when the VC circuit is open, DTCs P0222 and P2135 are also output simultaneously) ECM	Come on	DTC Stored	ES-100
P0123	Throttle / Pedal Position Sensor / Switch "A" Circuit High Input	 Throttle position sensor (built in throttle body) Open in VTA circuit Open in E2 circuit VC and VTA circuits are short-circuited ECM 	Come on	DTC Stored	ES-100
P0125	Insufficient Coolant Temperature for Closed Loop Fuel Control	 Cooling system Engine coolant temperature sensor Thermostat 	Come on	DTC Stored	ES-109
P0128	Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)	- Thermostat - Cooling system - Engine coolant temperature sensor - ECM	Come on	DTC Stored	ES-112
P0136	Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)	 Heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Heated oxygen sensor heater (bank 1 sensor 2) A/F sensor (bank 1 sensor 1) A/F sensor heater 	Come on	DTC Stored	ES-115
P0137	Oxygen Sensor Circuit Low Voltage (Bank 1 Sensor 2)	 Heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Heated oxygen sensor heater (bank 1 sensor 2) A/F sensor (bank 1 sensor 1) A/F sensor heater 	Come on	DTC Stored	ES-115

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0138	Oxygen Sensor Circuit High Voltage (Bank 1 Sensor 2)	 Heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Heated oxygen sensor heater (bank 1 sensor 2) A/F sensor (bank 1 sensor 1) A/F sensor heater 	Come on	DTC Stored	ES-115
P0171	System Too Lean (Fuel Trim)	 Air induction system Injector has blockage Mass air flow meter Engine coolant temperature sensor Fuel pressure Gas leakage in exhaust system Open or short in A/F sensor (bank 1 sensor 1) circuit A/F sensor (bank 1 sensor 1) A/F sensor heater (bank 1 sensor 1) EFI M relay (integration relay) PCV valve and hose PCV hose connection ECM 	Come on	DTC Stored	ES-128
P0172	System Too Rich (Bank 1)	 Injector has leakage or blockage Mass air flow meter Engine coolant temperature sensor Ignition system Fuel pressure Gas leakage in exhaust system Open or short in A/F sensor (bank 1 sensor 1) circuit A/F sensor (bank 1 sensor 1) A/F sensor heater (bank 1 sensor 1) EFI M relay (integration relay) ECM 	Come on	DTC Stored	ES-128
P0220	Throttle / Pedal Position Sensor / Switch "B" Circuit	Open or short in throttle position sensor circuit Throttle position sensor ECM	Come on	DTC Stored	ES-100

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0222 P0223	Throttle / Pedal Position Sensor / Switch "B" Circuit Low Input	Throttle position sensor Open in VTA2 circuit Open in VC circuit (when the VC circuit is open, DTCs P0122 and P2135 are also output simultaneously) Throttle position	Come on	DTC Stored	ES-100 ES-100
P0223	Position Sensor / Switch "B" Circuit High Input	- Throttle position sensor	Come on	DIC Stored	ES-100
P0300	Random / Multiple Cylinder Misfire Detected	 Open or short in engine wire harness Connector connection Vacuum hose connection Ignition system Injector Fuel pressure Mass air flow meter Engine coolant temperature sensor Compression pressure Valve clearance Valve clearance Valve timing PCV hose connection PCV hose COM ECM 	Comes on/Blink	DTC Stored	ES-141
P0301	Cylinder 1 Misfire Detected	- Same as DTC P0300	Comes on/Blink	DTC Stored	ES-141
P0302	Cylinder 2 Misfire Detected	- Same as DTC P0300	Comes on/Blink	DTC Stored	ES-141
P0303	Cylinder 3 Misfire Detected	- Same as DTC P0300	Comes on/Blink	DTC Stored	ES-141
P0304	Cylinder 4 Misfire Detected	- Same as DTC P0300	Comes on/Blink	DTC Stored	ES-141
P0325	Knock Sensor 1 Circuit	 Open or short in knock sensor circuit Knock sensor (looseness) ECM 	Come on	DTC Stored	ES-154
P0327	Knock Sensor 1 Circuit Low Input (Bank 1 or Single Sensor)	 Short in knock sensor circuit Knock sensor ECM 	Come on	DTC Stored	ES-154
P0328	Knock Sensor 1 Circuit High Input (Bank 1 or Single Sensor)	 Open in knock sensor circuit Knock sensor ECM 	Come on	DTC Stored	ES-154
P0335	Crankshaft Position Sensor "A" Circuit	 Open or short in crankshaft position sensor circuit Crankshaft position sensor Signal plate (crankshaft) ECM 	Come on	DTC Stored	ES-159

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0340	Camshaft Position Sensor Circuit Malfunction	 Open or short in camshaft position sensor circuit Camshaft position sensor Camshaft timing pulley Timing chain has jumped a tooth ECM 	Come on	DTC Stored	ES-163
P0341	Camshaft Position Sensor "A" Circuit Range / Performance (Bank 1 or Single Sensor)	- Same as DTC P0340	Come on	DTC Stored	ES-163
P0351	Ignition Coil "A" Primary / Secondary Circuit	 Ignition system Open or short in IGF or IGT1 circuit between ignition coil with igniter and ECM No.1 ignition coil with igniter ECM 	Come on	DTC Stored	ES-167
P0352	Ignition Coil "B" Primary / Secondary Circuit	Ignition system Open or short in IGF or IGT2 circuit between ignition coil with igniter and ECM No.2 ignition coil with igniter ECM	Come on	DTC Stored	ES-167
P0353	Ignition Coil "C" Primary / Secondary Circuit	 Ignition system Open or short in IGF or IGT3 circuit between ignition coil with igniter and ECM No.3 ignition coil with igniter ECM 	Come on	DTC Stored	ES-167
P0354	Ignition Coil "D" Primary / Secondary Circuit	 Ignition system Open or short in IGF or IGT4 circuit between ignition coil with igniter and ECM No.4 ignition coil with igniter ECM 	Come on	DTC Stored	ES-167
P0420	Catalyst System Efficiency Below Threshold (Bank 1)	 Gas leakage in exhaust system A/F sensor (bank 1 sensor 1) Heated oxygen sensor (bank 1 sensor 2) Three-way catalytic converter (exhaust manifold) 	Come on	DTC Stored	ES-177

ES-55

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P043E	Evaporative Emission System Reference Orifice Clog Up	 Canister pump module (Reference orifice, leak detection pump, vent valve) Connector/wire harness (Canister pump module - ECM) EVAP system hose (pipe from air inlet port to canister pump module, canister filter, fuel tank vent hose) ECM 	Come on	DTC Stored	ES-184
P043F	Evaporative Emission System Reference Orifice High Flow	- Same as DTC P043E	Come on	DTC Stored	ES-184
P0441	Evaporative Emission Control System Incorrect Purge Flow	 Purge VSV Connector/wire harness (Purge VSV ECM) Canister pump module Leakage from EVAP system Leakage from EVAP line (Purge VSV - Intake manifold) ECM 	Come on	DTC Stored	ES-207
P0446	Evaporative Emission Control System Vent Control Circuit	- Pressure swithing valve - EVAP line (Pressure switching valve - Fuel tank) - ECM	Come on	DTC Stored	ES-231
P0450	Evaporative Emission Control System Pressure Sensor Malfunction	 Canister pump module EVAP system hose (pipe from air inlet port to canister pump module, canister filter, fuel tank vent hose) Connector/wire harness (Canister pump module - ECM) ECM 	Come on	DTC Stored	ES-245
P0451	Evaporative Emission Control System Pressure Sensor Range / Performance	 Canister pump module EVAP system hose (pipe from air inlet port to canister pump module, canister filter, fuel tank vent hose) ECM 	Come on	DTC Stored	ES-245
P0452	Evaporative Emission Control System Pressure Sensor / Switch Low Input	- Same as DTC P0450	Come on	DTC Stored	ES-245
P0453	Evaporative Emission Control System Pressure Sensor / Switch High Input	- Same as DTC P0450	Come on	DTC Stored	ES-245

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P0455	Evaporative Emission Control System Leak Detected (Gross Leak)	 Fuel cap (loose) Leakage from EVAP line (Canister - Fuel tank) Leakage from EVAP line (Purge VSV - Canister) Canister pump module Leakage from fuel tank Leakage from canister 	Come on	DTC Stored	ES-259
P0456	Evaporative Emission Control System Leak Detected (Very Small Leak)	- Same as DTC P0455	Come on	DTC Stored	ES-259
P0505	Idle Control System Malfunction	 Open or short in idle speed control (ISC) valve circuit Idle speed control (ISC) valve has stuck closed ECM Air induction system PCV valve and hose 	Come on	DTC Stored	ES-282
P0560	System Voltage	- Open in back up power source circuit - ECM	Come on	DTC Stored	ES-285
P0604	Internal Control Module Random Access Memory (RAM) Error	- ECM	Come on	DTC Stored	ES-289
P0606	ECM / PCM Processor	- ECM	Come on	-	ES-289
P0607	Control Module Performance	- ECM	Come on	DTC Stored	ES-289
P0657	Actuator Supply Voltage Circuit / Open	- ECM	Come on	DTC Stored	ES-289
P1115	Coolant Temperature Sensor Circuit for Coolant Heat Storage System	 Coolant heat storage tank outlet temperature sensor Open or short in temperature sensor circuit ECM 	Come on	DTC Stored	ES-291
P1116	Coolant Temperature Sensor Circuit Stack for Coolant Heat Storage	- Coolant heat storage tank outlet temperature sensor - Cooling system (clogging)	Come on	DTC Stored	ES-296
P1117	Coolant Temperature Sensor Circuit Low for Coolant Heat Storage	- Coolant heat storage tank outlet temperature sensor - Short in temperature sensor circuit - ECM	Come on	DTC Stored	ES-291

ES–57

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P1118	Coolant Temperature Sensor Circuit High for Coolant Heat Storage	 Coolant heat storage tank outlet temperature sensor Open in temperature sensor circuit ECM 	Come on	DTC Stored	ES-291
P1120	Coolant Flow Control Valve Position Sensor Circuit	 Open or short in water valve position sensor circuit Water valve (coolant flow control valve) ECM 	Come on	DTC Stored	ES-298
P1121	Coolant Flow Control Valve Position Sensor Circuit Stuck	- Water valve (coolant flow control valve) - Cooling system (clogging)	Come on	DTC Stored	ES-304
P1122	Coolant Flow Control Valve Position Sensor Circuit Low	 Water valve (coolant flow control valve) Short in WBAD (valve position signal) circuit Open in VC circuit ECM 	Come on	DTC Stored	ES-298
P1123	Coolant Flow Control Valve Position Sensor Circuit High	 Water valve (coolant flow control valve) Open in E2 circuit VC and WBAD circuits are short- circuited Open in WBAD circuit ECM 	Come on	DTC Stored	ES-298
P1150	Coolant Path Clog of Coolant Heat Storage System	 Coolant heat storage tank outlet temperature sensor Water valve (coolant flow control valve) Cooling system (clogging) Heat storage tank ECM 	Come on	DTC Stored	ES-308
P1151	Coolant Heat Storage Tank	- Heat storage tank	Come on	DTC Stored	ES-312
P1450	Fuel Tank Pressure Sensor	 Fuel tank pressure sensor Connector/wire harness (Fuel tank pressure sensor - ECM) ECM 	Come on	DTC Stored	ES-315
P1451	Fuel Tank Pressure Sensor Range/ Performance	 Fuel tank pressure sensor ECM 	Come on	DTC Stored	ES-315
P1452	Fuel Tank Pressure Sensor Low Input	- Fuel tank pressure sensor - Connector/wire harness (Fuel tank pressure sensor - ECM) - ECM	Come on	DTC Stored	ES-315

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P1453	Fuel Tank Pressure Sensor High Input	- Fuel tank pressure sensor - Connector/wire harness (Fuel tank pressure sensor - ECM) - ECM	Come on	DTC Stored	ES-315
P1455	Vapor Reducing Fuel Tank System Malfunction	- Fuel Tank	Come on	DTC Stored	ES-327
P2102	Throttle Actuator Control Motor Circuit Low	 Open or short in throttle control motor circuit Throttle control motor ECM 	Come on	DTC Stored	ES-329
P2103	Throttle Actuator Control Motor Circuit High	 Short in throttle control motor circuit Throttle control motor Throttle valve Throttle body assembly ECM 	Come on	DTC Stored	ES-329
P2111	Throttle Actuator Control System - Stuck Open	 Throttle control motor circuit Throttle control motor Throttle body Throttle valve 	Come on	DTC Stored	ES-333
P2112	Throttle Actuator Control System - Stuck Closed	 Throttle control motor circuit Throttle control motor Throttle body Throttle valve 	Come on	DTC Stored	ES-333
P2118	Throttle Actuator Control Motor Current Range / Performance	- Open in ETCS power source circuit - ETCS fuse - ECM	Come on	DTC Stored	ES-336
P2119	Throttle Actuator Control Throttle Body Range / Performance	- Electric throttle control system - ECM	Come on	DTC Stored	ES-341
P2135	Throttle / Pedal Position Sensor / Switch "A" / "B" Voltage Correlation	 VTA and VTA2 circuits are short- circuited Open in VC circuit Throttle position sensor 	Come on	DTC Stored	ES-100
P2195	Oxygen (A/F) Sensor Signal Stuck Lean (Bank 1 Sensor 1)	 Open or short in A/F sensor (bank 1 sensor 1) circuit A/F sensor (bank 1 sensor 1) A/F sensor heater Integration relay A/F sensor heater and relay circuit Air induction system Fuel pressure Injector PCV hose connection ECM 	Come on	DTC Stored	ES-344

ES

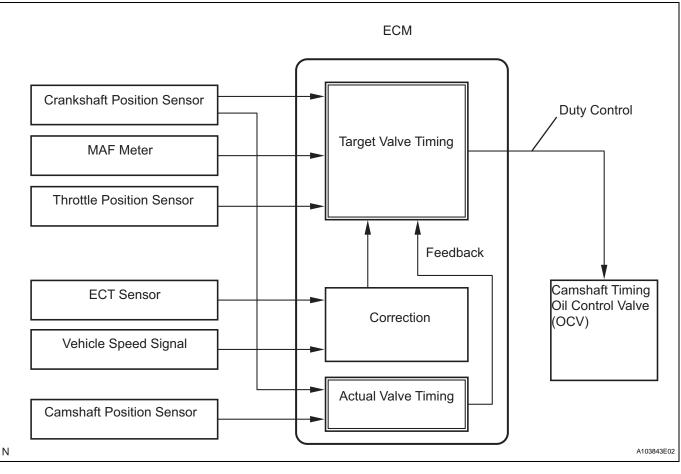
ES-59

ES-60

1NZ-FXE ENGINE CONTROL SYSTEM – SFI SYSTEM

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P2196	Oxygen (A/F) Sensor Signal Stuck Rich (Bank 1 Sensor 1)	- Same as DTC P2195	Come on	DTC Stored	ES-344
P2238	Oxygen (A/F) Sensor Pumping Current Circuit Low (Bank 1 Sensor 1)	 Open or short in A/F sensor (bank 1 sensor 1) A/F sensor (bank 1 sensor 1) A/F sensor heater EFI M relay (integration relay) A/F sensor heater and relay circuit ECM 	Come on	DTC Stored	ES-357
P2239	Oxygen (A/F) Sensor Pumping Current Circuit High (Bank 1 Sensor 1)	- Same as DTC P2238	Come on	DTC Stored	ES-357
P2252	Oxygen (A/F) Sensor Reference Ground Circuit Low (Bank 1 Sensor 1)	- Same as DTC P2238	Come on	DTC Stored	ES-357
P2253	Oxygen (A/F) Sensor Reference Ground Circuit High (Bank 1 Sensor 1)	- Same as DTC P2238	Come on	DTC Stored	ES-357
P2401	Evaporative Emission Leak Detection Pump Stuck OFF	- Same as DTC P043E	Come on	DTC Stored	ES-184
P2402	Evaporative Emission Leak Detection Pump Stuck ON	- Same as DTC P043E	Come on	DTC Stored	ES-184
P2419	Evaporative Emission Pressure Switching Valve Stuck ON	- Same as DTC P043E	Come on	DTC Stored	ES-184
P2420	Evaporative Emission Pressure Switching Valve Stuck OFF	 Pump module (0.02 inch orifice, vacuum pump, vent valve) Connector / wire harness (Pump module - ECM) ECM 	Come on	DTC Stored	ES-363
P2601	Coolant Pump Control Circuit Range / Performance	 CHS water pump CHS water pump relay Open or short in CHS water pump circuit ECM 	Come on	DTC Stored	ES-384
P2610	ECM / PCM Internal Engine Off Timer Performance	- ECM	Come on	DTC Stored	ES-390

DTC No.	Detection Item	Trouble Area	MIL	Memory	See page
P2A00	A/F Sensor Circuit Slow Response (Bank 1 Sensor 1)	 Open or short in A/F sensor (bank 1 sensor 1) circuit A/F sensor (bank 1 sensor 1) A/F sensor heater EFI M relay (integration relay) A/F sensor heater and relay circuit Air induction system Fuel pressure Injector PCV hose connection ECM 	Come on	DTC Stored	ES-392
P3190	Poor Engine Power	 Air induction system Throttle body Fuel pressure Engine Air flow meter Lack of fuel Engine coolant temperature sensor Crankshaft position sensor Camshaft position sensor ECM 	Come on	DTC Stored	ES-403
P3191	Engine dose not Start	 Air induction system Throttle body Fuel pressure Engine Air flow meter Lack of fuel Engine coolant temperature sensor Crankshaft position sensor Camshaft position sensor ECM 	Come on	DTC Stored	ES-403
P3193	Fuel Run Out	- Lack of fuel - ECM	Come on	DTC Stored	ES-403
U0293	Lost Communication with HV ECU	- Wire harness - HV ECU - ECM	Come on	DTC Stored	ES-410


ES-61

DTC	P0010	Camshaft Position "A" Actuator Circuit (Bank 1)
-----	-------	---

DESCRIPTION

The Variable Valve Timing (VVT) system includes the ECM, the Oil Control Valve (OCV) and the VVT controller. The ECM sends a target "duty-cycle" control signal to the OCV. This control signal, applied to the OCV, regulates the oil pressure supplied to the VVT controller. Camshaft timing control is performed based on engine operation condition such as intake air volume, throttle position and engine coolant temperature.

The ECM controls the OCV based on the signals from several sensors. The VVT controller regulates the intake camshaft angle using oil pressure through the OCV. As result, the relative position between the camshaft and the crankshaft is optimized, the engine torque and fuel economy improve, and exhaust emissions decrease. The ECM detects the actual valve timing using signals from the camshaft position sensor and the crankshaft position sensor. The ECM performs feedback control and verifies target valve timing.

DTC No.	DTC Detection Condition	Trouble Area
P0010	Open or short in oil control valve circuit	Open or short in oil control valve circuitOil control valveECM

MONITOR DESCRIPTION

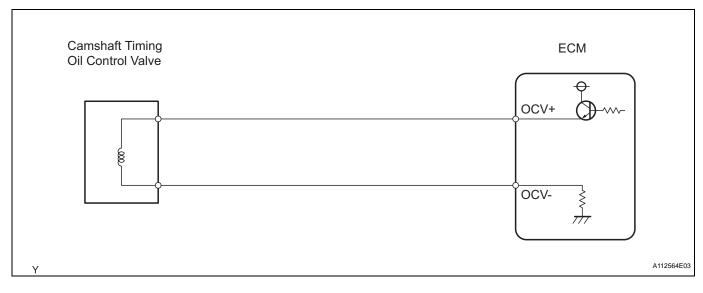
After the ECM sends the "target" duty-cycle signal to the OCV, the ECM monitors the OCV current to establish an "actual" duty-cycle. The ECM detects malfunction and sets a DTC when the actual duty-cycle ratio varies from the target duty-cycle ratio.

MONITOR STRATEGY

Related DTCs	P0010: VVT oil control valve range check
Required sensors/components	OCV
Frequency of operation	Continuous
Duration	1 second
MIL operation	Immediately
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	None
Battery voltage	11 to 13 V
Target duty ratio	Less than 70%
Current cut status	Not cut


TYPICAL MALFUNCTION THRESHOLDS

Output duty is 3% or less despite the ECM supplying the current to the
OCV or Output duty is 100%

COMPONENT OPERATING RANGE

Output signal duty for OCV	More than 3% and less than 100%
----------------------------	---------------------------------

WIRING DIAGRAM

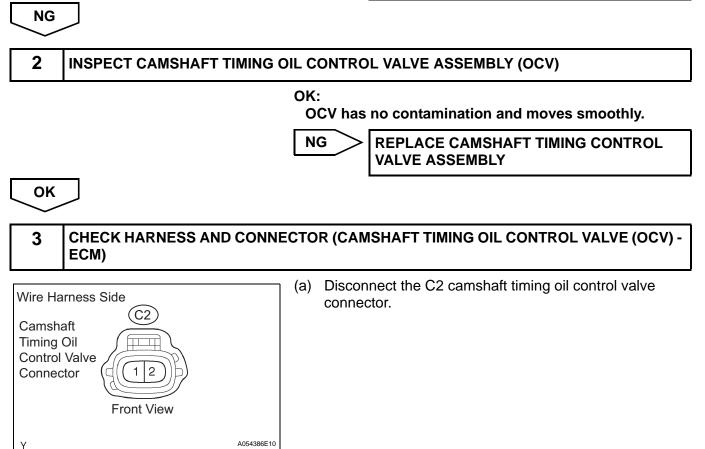
INSPECTION PROCEDURE

HINT:

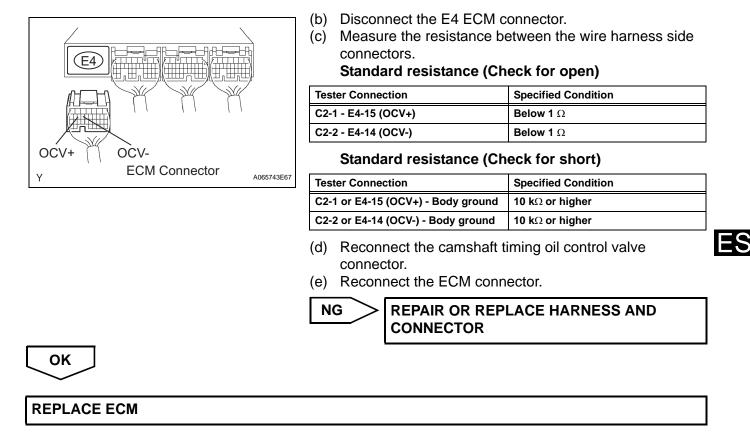
Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 PERFORM ACTIVE TEST BY INTELLIGENT TESTER (OPERATE OCV)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Put the engine in inspection mode (see page ES-1).
- (e) Start the engine and warm it up.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / VVT CTRL B1.
- (g) Using the intelligent tester, operate the OCV and check the engine speed.


ΟΚ

Tester Operation	Specified Condition
OCV is OFF	Normal engine speed
OCV is ON	Rough idle or engine stall


NOTICE:

Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.

DTC	P0011	Camshaft Position "A" - Timing Over-Advanced or System Performance (Bank 1)
DTC	P0012	Camshaft Position "A" - Timing Over-Retarded (Bank 1)

DESCRIPTION

Refer to DTC P0010 (see page ES-55).

DTC No.	DTC Detection Condition	Trouble Area
P0011	Valve timing is not adjusted in valve timing advance range (1 trip detection logic)	Camshaft timing gear assemblyOil control valveValve timing
P0012	Valve timing is not adjusted in valve timing retard range (2 trip detection logic)	Camshaft timing gear assemblyOil control valveValve timing

MONITOR DESCRIPTION

To monitor the VVT components, the ECM (PCM) measures the valve timing that is calculated by the camshaft position and crankshaft position. The valve timing is usually adjusted in accordance with the driving condition. If the valve timing variation is less than the malfunction criterion, the ECM illuminates the MIL and set a DTC. P0011 is set when the valve timing is in the valve timing advance range. P0012 is set when the valve timing is in valve timing retard range.

MONITOR STRATEGY

Related DTCs	P0011: VVT system advance (bank) P0012: VVT system retard (bank 1)
Required sensors/components	Main sensors: Camshaft timing gear assembly Oil control valve Related sensors: Camshaft position sensor Engine coolant temperature sensor Crankshaft position sensor
Frequency of operation	Once per driving cycle
Duration	10 seconds
MIL operation	P0011: Immediately P0012: 2 driving cycles
Sequence of operation	None

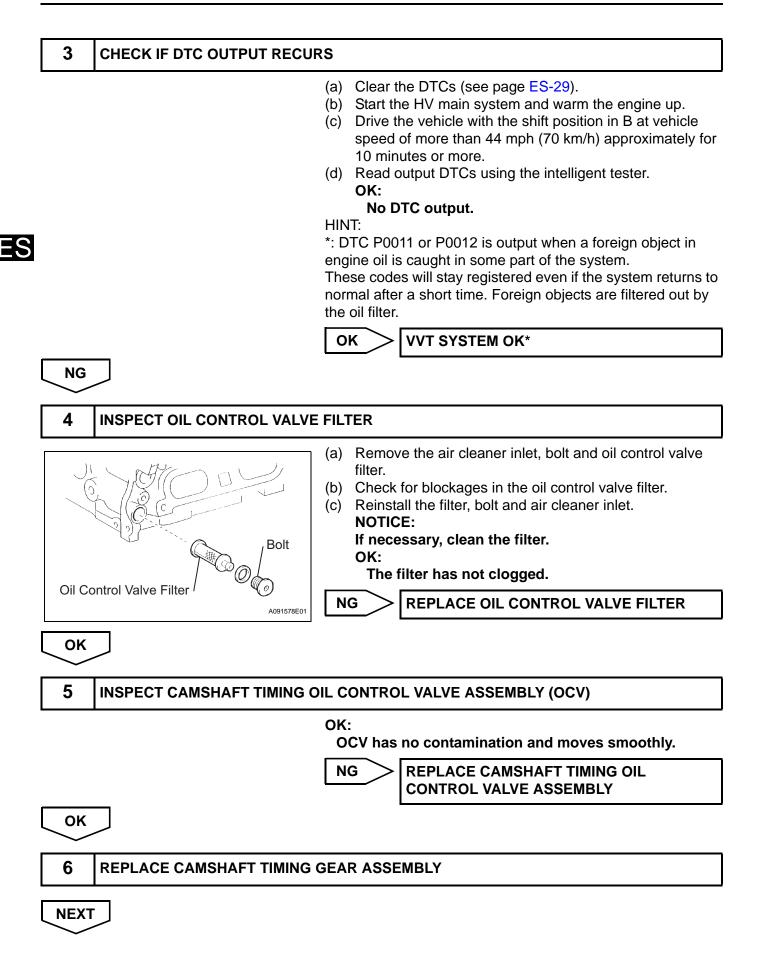
TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	P0100 - P0103 (MAF meter) P0115 - P0118 (ECT sensor) P0125 (Insufficient ECT for closed loop) P0335 (CKP sensor) P0340, P0341 (CMP sensor) P0351-P0354 (Igniter)
Battery voltage	11 V or more
Engine speed	900 to 5,000 rpm
Engine coolant temperature	75 to 100°C(167 to 212°F)

TYPICAL MALFUNCTION THRESHOLDS

Following conditions are met:	1 and 2
1. Deviation of valve timing (Target valve timing - Actual valve timing)	More than 5°CA
2. Response of valve timing	No change

WIRING DIAGRAM


Refer to DTC P0010 (see page ES-56).

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1	CHECK VALVE TIMING (CHECK FOR LOOSE AND A JUMPED TOOTH OF TIMING CHAIN)			
			ankshaft pulley and camshaft	
	Ν	G ADJUST VAL		
ОК				
2	PERFORM ACTIVE TEST BY INTELLIGENT TESTER (OPERATE OCV)			
	(e) (f)	Start the engine and Enter the following m OBD II / ACTIVE TES	n ON (IG). ster ON. pection mode (see page ES-1). warm it up. enus: DIAGNOSIS / ENHANCED	
	Tes	ster Operation	Specified Condition	
	00	OCV is OFF Normal engine speed		
	oc	OCV is ON Rough idle or engine stall		
	NOTICE: Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.			
	N	NG Go to step 5		
ОК	\supset			

7	CHECK IF DTC OUTPUT RECURS
	 (a) Clear the DTCs (see page ES-29). (b) Start the HV system, and warm the engine up. (c) Drive the vehicle with the shift position in B at vehicle speed of more than 70 km/h (44 mph) approximately for 10 minutes or more. (d) Read output DTCs using the intelligent tester. OK: No DTC output.
OK END	

DTC	P0016	Crankshaft Position - Camshaft Position Corre- lation (Bank 1 Sensor A)
-----	-------	--

DESCRIPTION

Refer to DTC P0335 (see page ES-159).

DTC No.	DTC Detection Condition	Trouble Area
P0016	Deviation in crankshaft position sensor signal and VVT sensor signal (2 trip detection logic)	 Mechanical system (timing chain has jumped a tooth, chain stretched) ECM

MONITOR DESCRIPTION

The ECM optimizes the valve timing using the Variable Valve Timing (VVT) system to control the intake valve camshaft. The VVT system includes the ECM, the Oil Control Valve (OCV) and the VVT controller. The ECM sends a target "duty-cycle" control signal to the OCV. This control signal, applied to the OCV, regulates the oil pressure supplied to the VVT controller. The VVT controller can advance or retard the intake valve camshaft. The ECM calibrates the valve timing of the VVT system by setting the camshaft to the maximum retard angle when the engine speed is idling. The ECM closes the OCV to retard the cam. The ECM stores this valve as "VVT learned value" (when the difference between the target valve timing and the actual valve timing is 5 degrees or less, the ECM stores this in its memory).

If the learned value meets both of the following conditions ("a" and "b"), the ECM interprets this as a defect in the VVT system and sets a DTC.

(a) VVT learning value is less than 30°CA (CA: Crankshaft Angle), or more than 46°CA.

(b) Above condition continues for more than 18 second.

MONITOR STRATEGY

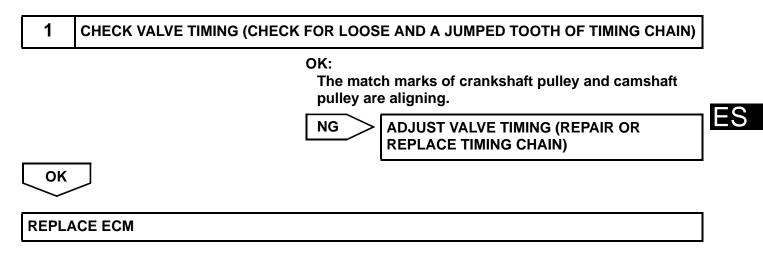
Related DTCs	P0016: Deviation in crankshaft position sensor signal and VVT sensor signal
Required sensors/components	Crankshaft position sensor, camshaft position sensor
Frequency of operation	Once per driving cycle
Duration	60 seconds
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	P0011 (VVT System 1 - Advance) P0012 (VVT System 1 - Retard) P0115 - P0118 (ECT sensor)
Engine speed	900 to 5,000 rpm
Valve timing	Maximum valve timing retard

TYPICAL MALFUNCTION THRESHOLDS

Either of the following conditions is met:	(a) or (b)	
(a) VVT learned value	Less than 30°CA	
(b) VVT learned value	More than 46°CA	

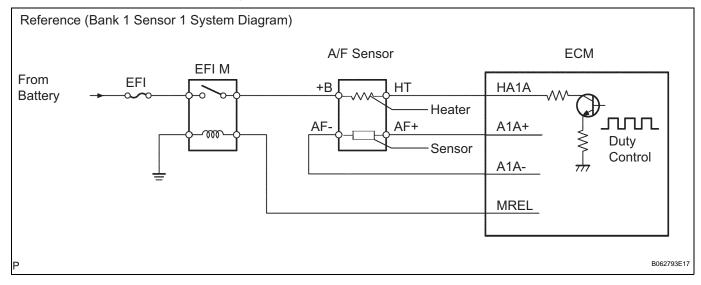

WIRING DIAGRAM

Refer to DTC P0335 (see page ES-160).

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.


DTC	P0031	Oxygen (A/F) Sensor Heater Control Circuit Low (Bank 1 Sensor 1)
DTC	P0032	Oxygen (A/F) Sensor Heater Control Circuit High (Bank 1 Sensor 1)

DESCRIPTION

Refer to DTC P2195 (see page ES-344).

HINT:

- Although each DTC title says "oxygen sensor," these DTCs are related to the air-fuel ratio sensor (A/F sensor).
- The ECM provides a pulse width modulated control circuit to adjust current through the heater. The A/F sensor heater circuit uses a relay on the +B side of the circuit.

DTC No.	DTC Detection Condition	Trouble Area
P0031	Heater current is less than 0.8 A when the heater operates (1 trip detection logic)	 Open or short in heater circuit of A/F sensor A/F sensor heater EFI M relay (integration relay) ECM
P0032	Heater current exceeds 10 A when the heater operates (1 trip detection logic)	 Short in heater circuit of A/F sensor A/F sensor heater EFI M relay (integration relay) ECM

HINT:

- Sensor 1 refers to the sensor mounted before the TWC and is located near the engine assembly.
- Sensor 2 refers to the sensor mounted after the TWC and is located far from the engine assembly.

MONITOR DESCRIPTION

The ECM uses the Air-Fuel Ratio (A/F) sensor information to regulate the air-fuel ratio close to the stoichiometric ratio. This maximizes the catalytic converter's ability to purify exhaust gases. The sensor detects oxygen levels in the exhaust gas and sends this signal to the ECM.

The inner surface of the sensor element is exposed to outside air. The outer surface of the sensor element is exposed to the exhaust gas. The sensor element is made of platinum coated zirconia and includes an integrated heating element. The zirconia element generates a small voltage when there is a large difference between the oxygen concentrations of the exhaust and the outside air. The platinum coating amplifies the voltage generation. When heated, the sensor becomes very efficient. If the temperature of the exhaust is low, the sensor will not generate useful voltage signals without supplemental heating. The ECM regulates the supplemental heating using a duty-cycle approach to regulate the average current in the heater element. If the heater current is out of the normal range, the sensor output signals will be inaccurate and the ECM can not regulate the air-fuel ratio properly. When the heater current is out of the normal operating range, the ECM interprets this as malfunction of the sensor and sensor circuit and sets a DTC.

MONITOR STRATEGY

Related DTCs	P0031: A/F sensor heater current (low current) P0032: A/F sensor heater current (high current)
Required sensors/components	A/F sensor, ECM
Frequency of operation	Continuous
Duration	10 seconds
MIL operation	Immediately
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	P0300 - P0304 (Misfire)
Battery voltage	10.5 V or more
Heater duty ratio-cycle	P0031: 50% or more P0032: More than 0%
Time after engine start	10 seconds or more

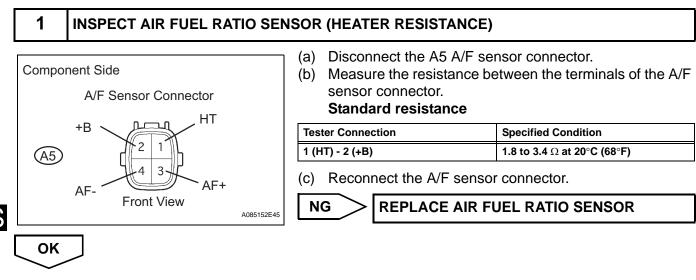
TYPICAL MALFUNCTION THRESHOLDS

P0031	1:

A/F sensor heater current	Less than 0.8 A
P0031:	
A/E sensor heater current	More than 10 A

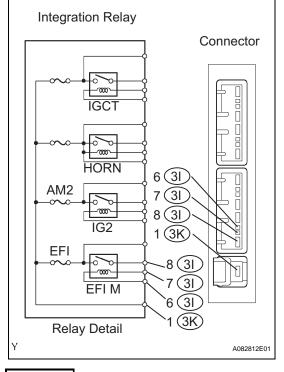
COMPONENT OPERATING RANGE

A/F sensor heater current	1.8 to 3.4 A (at 20°C [68°F])
---------------------------	-------------------------------


WIRING DIAGRAM

Refer to DTC P2195 (see page ES-347).

INSPECTION PROCEDURE

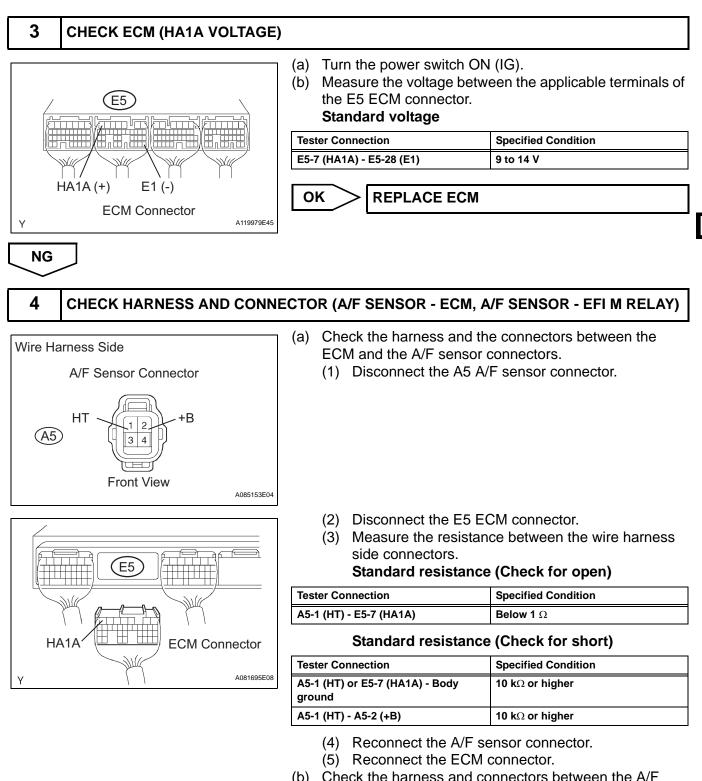

HINT:

- When DTC P0032 is detected, proceed to step 4 if the heater resistance is in normal range.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

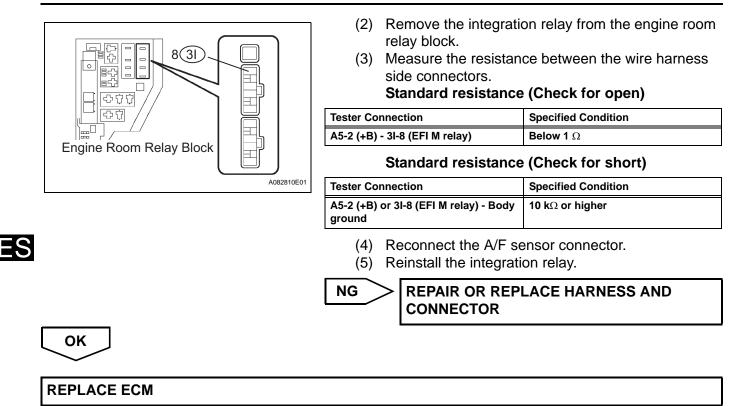
ES

2 INSPECT INTEGRATION RELAY (EFI M RELAY)

- (a) Remove the integration relay from the engine room relay block.
- (b) Inspect the EFI M relay. Standard resistance


Tester Connection	Specified Condition
3K-1 - 3I-8	10 k Ω or higher
3K-1 - 3I-8	Below 1 Ω (Apply battery voltage to terminals 3I-6 and 3I-7)

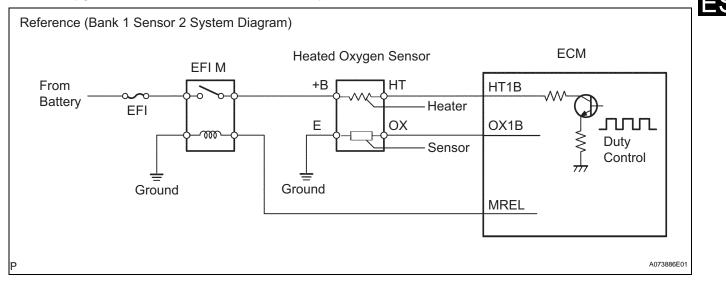
(c) Reinstall the integration relay.


NG

REPLACE INTEGRATION RELAY

OK

- (b) Check the harness and connectors between the A/F sensor connector and the EFI M relay.
 - (1) Disconnect the A5 A/F sensor connector.


DTC	P0037	Oxygen Sensor Heater Control Circuit Low (Bank 1 Sensor 2)
DTC	P0038	Oxygen Sensor Heater Control Circuit High (Bank 1 Sensor 2)

DESCRIPTION

Refer to DTC P0136 (see page ES-115).

HINT:

The ECM provides a pulse width modulated control circuit to adjust current through the heater. The heated oxygen sensor heater circuit uses a relay on the +B side of the circuit.

DTC No.	DTC Detection Condition	Trouble Area
P0037	Heater current is less than 0.3 A when the heater operates with +B greater than 10.5 V (1 trip detection logic)	 Open or short in heater circuit of the heated oxygen sensor Heated oxygen sensor heater EFI M relay (integration relay) ECM
P0038	When the heater operates, heater current exceeds 2 A (1 trip detection logic)	 Short in heater circuit of the heated oxygen sensor Heated oxygen sensor heater EFI M relay (integration relay) ECM

HINT:

- Sensor 1 refers to the sensor mounted before the TWC and is located near the engine assembly.
- Sensor 2 refers to the sensor mounted after the TWC and is located far from the engine assembly.

MONITOR DESCRIPTION

The sensing portion of the heated oxygen sensor has a zirconia element which is used to detect oxygen concentration in the exhaust gas. If the zirconia element is at the proper temperature and difference of the oxygen concentration between the inside and outside surfaces of sensor is large, the zirconia element will generate voltage signals. In order to increase the oxygen concentration detecting capacity in the zirconia element, the ECM supplements the heat from the exhaust with heat from a heating element inside the sensor. When current in the sensor is out of the standard operating range, the ECM interprets this as a fault in the heated oxygen sensor and sets a DTC. Example:

The ECM will set a high current DTC if the current in the sensor is more than 2 A when the heater is OFF. Similarly, the ECM will set a low current DTC if the current is less than 0.25 A when the heater is ON.

MONITOR STRATEGY

Related DTCs	P0037: Heated oxygen sensor heater current bank 1 sensor 2 (low current) P0038: Heated oxygen sensor heater current bank 1 sensor 2 (high current)
Required sensors/components	Main sensors: Heated oxygen sensor Related sensors: Vehicle speed sensor
Frequency of operation	Continuous
Duration	0.5 seconds
MIL operation	1 driving cycle
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

All:

Monitor runs whenever following DTCs not present	None
Battery voltage	10.5 V or more
Engine	Running
Starter	OFF
Catalyst intrusive monitoring	Not operating
Intrusive heating	Not operating

P0037:

When the following conditions are met	0.5 seconds or more
Learned heater current during heater OFF	Completed
Intrusive heating	Not operating
Heating is OFF	Less than 0.1 seconds
Heater current	Less than 0.3 A
Intrusive heating for high current monitor	Not operating
Time after heaters are OFF	1 second or more

P0038:

When the following conditions are met	0.3 seconds or more
Learned heater current during heater OFF	Completed
Intrusive heating	Not operating
Heating is OFF	Less than 0.1 seconds
Heater current	2 A or more
Time after heaters are OFF	1 second or more

TYPICAL MALFUNCTION THRESHOLDS

P0037:

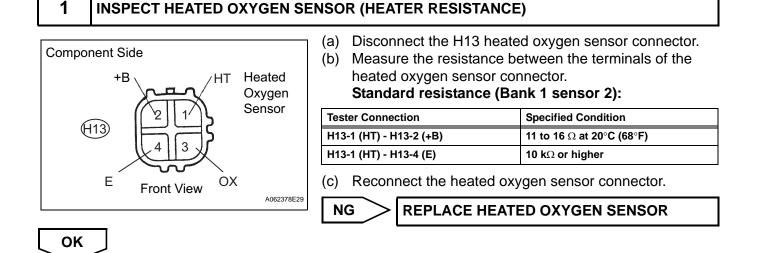
Heated oxygen sensor heater currentLess than 0.3 A (at 0.5 seconds after heater is turned ON)	
P0038:	
Heated oxygen sensor heater current	More than 2 A (while supplemental heating is OFF)

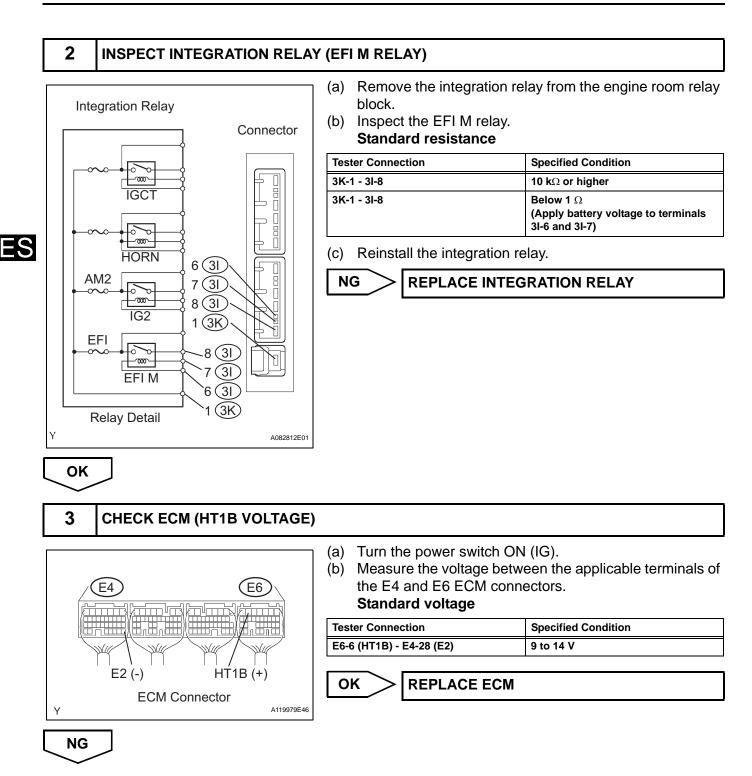
COMPONENT OPERATING RANGE

 Heated oxygen sensor heater current (after engine is warmed up)
 0.4 to 1.0 A (at idle and battery voltage 11 to 14 V)

MONITOR RESULT

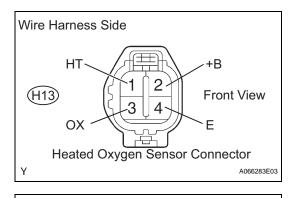
Refer to detailed information (see page ES-15).

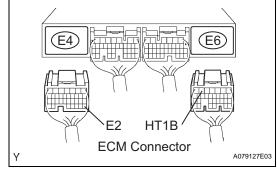

WIRING DIAGRAM


Refer to DTC P0136 (see page ES-121).

INSPECTION PROCEDURE

HINT:


- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- When DTC P0038 is detected, proceed to step 4 if the heater resistance is in normal range.





4

CHECK HARNESS AND CONNECTOR (HEATED OXYGEN SENSOR - ECM AND EFI M RELAY)

(a) Check the harness and the connectors between the ECM and the heated oxygen sensor connectors.

(1) Disconnect the H13 heated oxygen sensor connector.

- (2) Disconnect the E4 and E6 ECM connectors.
- (3) Measure the resistance between the wire harness side connectors.

Standard resistance (Check for open)

Tester Connection	Specified Condition
H13-1 (HT) - E6-6 (HT1B)	Below 1 Ω
H13-4 (E) - E4-28 (E2)	Below 1 Ω

Standard resistance (Check for short)

Tester Connection	Specified Condition
H13-1 (HT) or E6-6 (HT1B) - Body ground	10 k Ω or higher
H13-1 (HT) - H13-2 (+B)	10 k Ω or higher

- (4) Reconnect the heated oxygen sensor connector.
- (5) Reconnect the ECM connectors.
- (b) Check the harness and the connectors between the heated oxygen sensor connector and the EFI M relay.
 - (1) Disconnect the H13 heated oxygen sensor connector.
 - (2) Remove the integration relay from the engine room relay block.
 - (3) Measure the resistance between the wire harness side connectors.

Standard resistance (Check for open)

Tester Connection	Specified Condition
H13-2 (+B) - 3I-8 (EFI M relay)	Below 1 Ω

Standard resistance (Check for short)

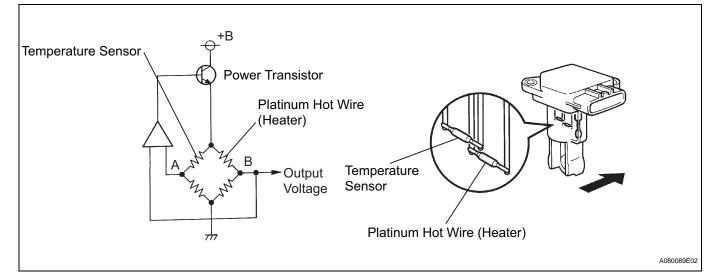
Т	Fester Connection	Specified Condition
	113-2 (+B) or 3I-8 (EFI M relay) - 3ody ground	10 k Ω or higher

- (4) Reconnect the heated oxygen sensor connector.
- (5) Reinstall the integration relay.

NG

REPAIR OR REPLACE HARNESS AND CONNECTOR OK

REPLACE ECM


DTC	P0100	Mass or Volume Air Flow Circuit
DTC	P0102	Mass or Volume Air Flow Circuit Low Input
DTC	P0103	Mass or Volume Air Flow Circuit High Input

DESCRIPTION

The MAF (Mass Air Flow) meter measures the amount of air flowing through the throttle valve. The ECM uses this information to determine the fuel injection time and provides a proper air-fuel ratio. Inside the MAF meter, there is a heated platinum wire exposed to the flow of intake air.

By applying a specific current to the wire, the ECM heats this wire to a given temperature. The flow of incoming air cools the wire and an internal thermistor, affecting their resistance. To maintain a constant current value, the ECM varies the voltage applied to these components in the MAF meter. The voltage level is proportional to the air flowing through the sensor. The ECM interprets this voltage as the intake air amount.

The circuit is constructed so that the platinum hot wire and temperature sensor provide a bridge circuit, and the power transistor is controlled so that the potential of A and B remains equal to maintain the set temperature.

DTC No.	DTC Detection Condition	Trouble Area
P0100	When the mass air flow meter circuit has an open or a short for more than 3 seconds	 Open or short in mass air flow meter circuit Mass air flow meter ECM
P0102	When the mass air flow meter circuit has an open for more than 3 seconds	 Open or in mass air flow meter circuit Mass air flow meter ECM
P0103	When the mass air flow meter circuit has a short for more than 3 seconds	 Short in mass air flow meter circuit Mass air flow meter ECM

HINT:

After confirming DTC P0100, P0102 or P0103, confirm the mass air flow ratio in DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY.

Air Flow Rate (g/sec.)	Malfunction	
Approximately 0.0	Mass air flow meter power source circuit openVG circuit open or short	
271.0 or more	E2G circuit open	

MONITOR DESCRIPTION

If there is a defect in the sensor or an open or short circuit, the voltage level will deviate from the normal operating range. The ECM interprets this deviation as a defect in the MAF meter and sets a DTC. Example:

When the sensor voltage output is less than 0.2 V or more than 4.9 V and if either condition continues for more than 3 seconds.

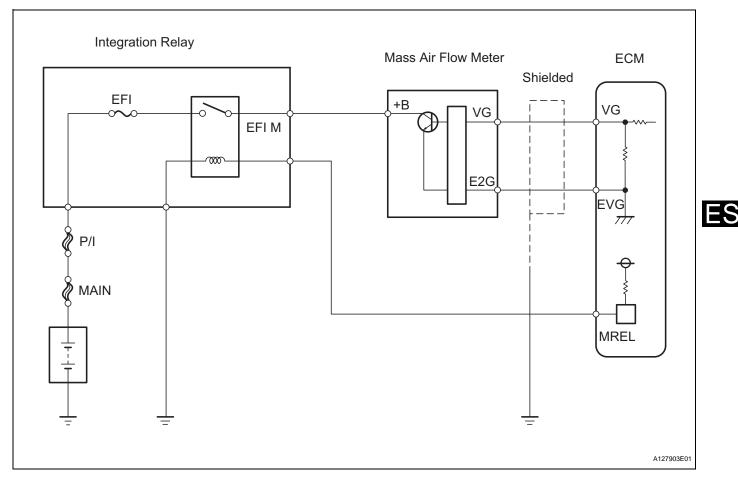
MONITOR STRATEGY

Re	elated DTCs	P0100: Mass air flow meter circuit range check (fluttering) P0102: Mass air flow meter circuit range check (low voltage) P0103: Mass air flow meter circuit range check (high voltage)
Re	equired sensors/components	Mass air flow meter
Fr	requency of operation	Continuous
Du	uration	3 seconds
M	IL operation	Immediately (when engine speed is less than 4,000 rpm) 2 driving cycles (when engine speed is 4,000 rpm or more)
Se	equence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	None
--	------

TYPICAL MALFUNCTION THRESHOLDS


P0100:

Mass air flow meter voltage	Less than 0.2 V or more than 4.9 V	
P0102:		
Mass air flow meter voltage	Less than 0.2 V	
P0103:		
Mass air flow meter voltage	More than 4.9 V	

COMPONENT OPERATING RANGE

Mass air flow meter voltage 0.4 to 2.2 V
--

WIRING DIAGRAM

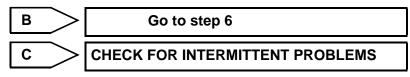
INSPECTION PROCEDURE

HINT:

1

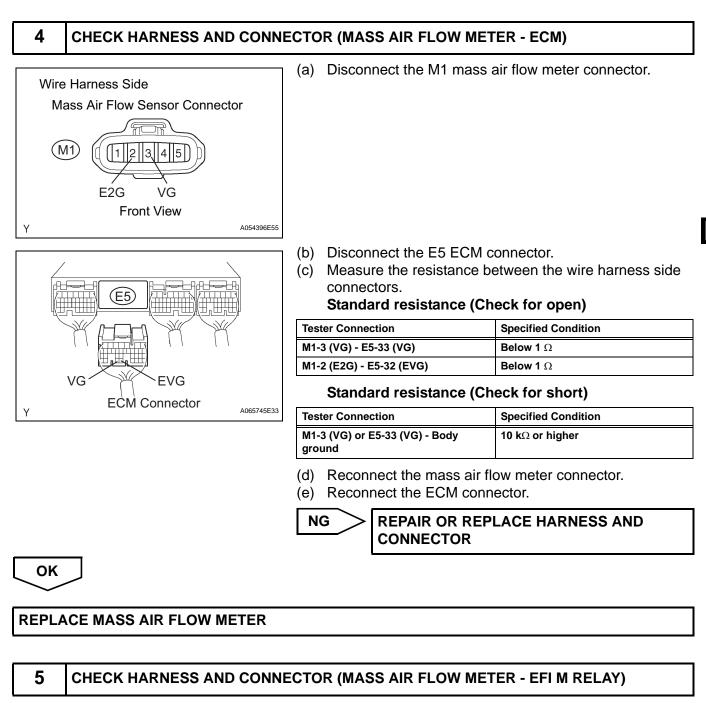
Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

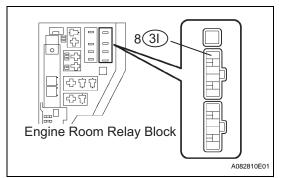
READ VALUE OF INTELLIGENT TESTER (MASS AIR FLOW RATE)

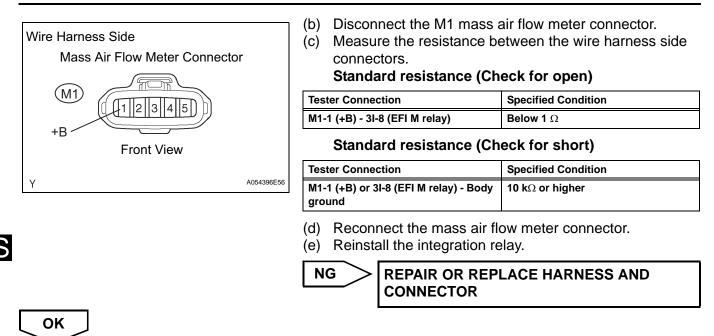

- (a) Connect the intelligent tester to the DLC3.
- (b) Put the engine in inspection mode (see page ES-1).
- (c) Start the engine.
- (d) Turn the intelligent tester ON.
- (e) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY / MAF.
- (f) Read its value using the intelligent tester. **Result**

Air Flow Rate (g/sec.)	Proceed to
0.0	A
271.0 or more	В
Between 1.0 and 270.0 (*)	C

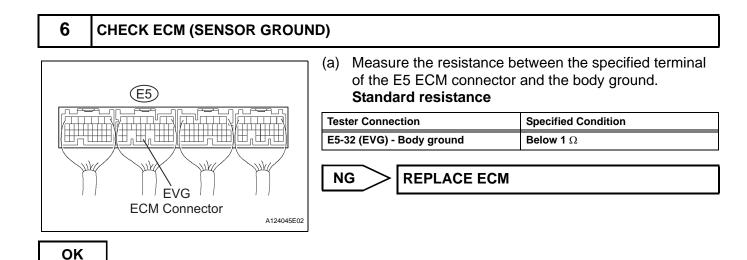
Α



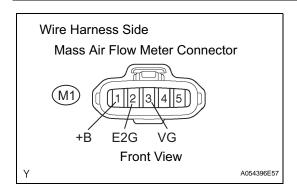

*: The value must be changed when the throttle valve is opened or closed.


2 **INSPECT MASS AIR FLOW METER (POWER SOURCE)** (a) Turn the power switch ON (IG). ES Disconnect the M1 mass air flow meter connector. (b) Wire Harness Side (c) Measure the voltage between the terminal of the wire Mass Air Flow Sensor Connector harness side connector and body ground. Standard voltage (M1) **Tester Connection Specified Condition** 11 3 M1-1 (+B) - Body ground 9 to 14 V +B (+) Reconnect the mass air flow meter connector. (d) Front View NG Go to step 5 A054396E54 Y OK 3 **CHECK ECM (VG VOLTAGE)** (a) Put the engine in inspection mode (see page ES-1). (b) Start the engine. (E5 (c) Measure the voltage between the specified terminals of the E5 ECM connector. HINT: The A/C switch should be turned OFF. Standard voltage **Tester Connection** Condition Specified Condition EVG (-) VG (+) **ECM Connector** E5-33 (VG) - E5-32 Engine is idling 0.5 to 3.0 V A124045E01 (EVG) **REPLACE ECM** OK

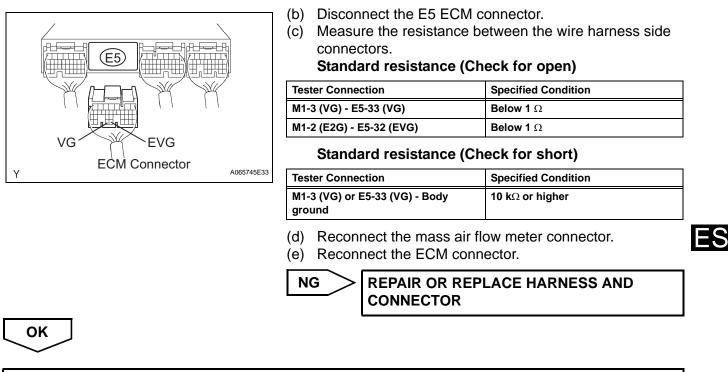
NG



(a) Remove the integration relay from the engine room relay block.



CHECK ECM POWER SOURCE CIRCUIT



7

CHECK HARNESS AND CONNECTOR (MASS AIR FLOW METER - ECM)

(a) Disconnect the M1 mass air flow meter connector.

REPLACE MASS AIR FLOW METER

Mass Air Flow Circuit Range / Performance Problem

DESCRIPTION

Refer to DTC P0100 (see page ES-76).

DTC No.	DTC Detection Condition	Trouble Area
P0101	 MAF meter voltage is higher than MAF meter voltage based on throttle position when the following conditions are met (2 trip detection logic): Engine coolant temperature is 70°C (158°F) or more Engine speed is less than 2,000 rpm 	Mass air flow meter
P0101	 MAF meter voltage is lower than MAF meter voltage based on throttle position when the following conditions are met (2 trip detection logic): Fuel cut is not executing Engine speed is more than 300 rpm 	Mass air flow meter

MONITOR DESCRIPTION

The MAF (Mass Air Flow) meter is a sensor that helps the ECM calculates the amount of air flowing through the throttle valve. The ECM uses this information to determine the fuel injection time and provide a proper air-fuel ratio. Inside the MAF meter, there is a heated platinum wire exposed to the flow of intake air. By applying a specific current to the wire, the ECM heats this wire to a given temperature. The flow of incoming air cools the wire and an internal thermistor, changing their resistance. To maintain a constant current value, the ECM varies the voltage applied to these components in the MAF meter. The voltage level is proportional to the air flow through the sensor and the ECM interprets this voltage as the intake air amount. If there is a defect in the sensor or an open or short circuit, the voltage level will deviate from the normal operating range. The ECM interprets this deviation as a defect in the MAF meter and sets a DTC. Example:

If the MAF meter voltage is higher than 2.2 V when the engine is idling, the ECM sets P0101 (2 trip detection logic). If the MAF meter voltage is higher than 0.9 V when the throttle valve is opened, the ECM sets P0101 (2 trip detection logic).

MONITOR STRATEGY

Related DTCs	P0101: Mass air flow meter rationality
Required sensors/components	Main sensors: Mass air flow meter Related sensors: Engine speed sensor, engine coolant temperature sensor, throttle position sensor
Frequency of operation	Continuous
Duration	10 seconds
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	P0115 - P0118 (ECT sensor) P0120 - P0223, P2135 (TP sensor) P0125 (Insufficient ECT for closed loop) P0335 (CKP sensor)
	P0340, P0341 (CMP sensor)

Case1: Mass air flow meter rationality (High voltage)

Engine speed	Less than 2,000 rpm
Engine coolant temperature	70°C(158°F) or more

Case2: Mass air flow meter rationality (Low voltage)

Engine speed	More than 300 rpm
Fuel cut	OFF

TYPICAL MALFUNCTION THRESHOLDS

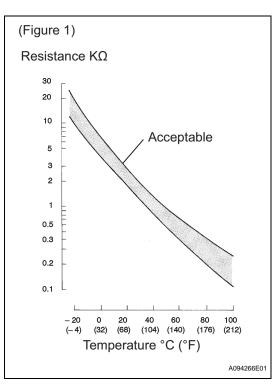
Case1: Mass air flow meter rationality (High voltage)

Mass air flow meter voltage	More than 2.2 V (varies with throttle position)	
Case2: Mass air flow meter rationality (Low voltage)		
Mass air flow meter voltage	Less than 0.9 V (varies with throttle position)	

WIRING DIAGRAM

Refer to DTC P0100 (see page ES-78).

INSPECTION PROCEDURE


HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P0101) (a) Connect the intelligent tester to the DLC3. (b) Turn the power switch ON (IG). (c) Turn the intelligent tester ON. (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES. (e) Read DTCs. Result Display (DTC output) Proceed to P0101 and other DTCs Α P0101 в HINT: If any other codes besides P0101 are output, perform troubleshooting for those DTCs first. В **REPLACE MASS AIR FLOW METER** Α GO TO RELEVANT DTC CHART

DTC	P0110	Intake Air Temperature Circuit
DTC	P0112	Intake Air Temperature Circuit Low Input
DTC	P0113	Intake Air Temperature Circuit High Input

DESCRIPTION

The intake air temperature (IAT) sensor, mounted on the mass air flow (MAF) meter, monitors the intake air temperature. The IAT sensor has a thermistor that varies its resistance depending on the temperature of the intake air. When the air temperature is low, the resistance in the thermistor increases. When the temperature is high, the resistance drops. The variations in resistance are reflected as voltage changes to the ECM terminal (see Figure 1).

The intake air temperature sensor is connected to the ECM (see wiring diagram). The 5 V power source voltage in the ECM is applied to the intake air temperature sensor from terminal THA (THAR) via resistor R.

That is, the resistor R and the intake air temperature sensor are connected in series. When the resistance value of the intake air temperature sensor changes in accordance with changes in the intake air temperature, the voltage at terminal THA (THAR) also changes. Based on this signal, the ECM increases the fuel injection volume to improve the driveability during cold engine operation.

DTC No.	DTC Detection Condition	Trouble Area
P0110	Open or short in intake air temperature sensor circuit for 0.5 seconds	 Open or short in intake air temperature sensor circuit Intake air temperature sensor (built in mass air flow meter) ECM
P0112	Short in intake air temperature sensor circuit for 0.5 seconds	 Short in intake air temperature sensor circuit Intake air temperature sensor (built in mass air flow meter) ECM

ES

DTC No.	DTC Detection Condition	Trouble Area
P0113	Open in intake air temperature sensor circuit for 0.5 seconds	 Open in intake air temperature sensor circuit Intake air temperature sensor (built in mass air flow meter) ECM

HINT:

After confirming DTC P0110, P0112 or P0113, confirm the intake air temperature in DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY using the intelligent tester.

Temperature Displayed	Malfunction
-40°C (-40°F)	Open circuit
140°C (284°F)	Short circuit

MONITOR DESCRIPTION

The ECM monitors the sensor voltage and uses this value to calculate the intake air temperature. When the sensor output voltage deviates from the normal operating range, the ECM interprets this as a fault in the IAT sensor and sets a DTC.

Example:

When the sensor voltage output is equal to -40°C (-40°F), or more than 140°C (284°F), and either condition continues for 0.5 seconds or more.

MONITOR STRATEGY

Related DTCs	P0110: Intake air temperature sensor range check (fluttering) P0112: Intake air temperature sensor range check (low resistance) P0113: Intake air temperature sensor range check (high resistance)
Required sensors/components	Intake air temperature sensor
Frequency of operation	Continuous
Duration	0.5 seconds
MIL operation	Immediately
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	None
--	------

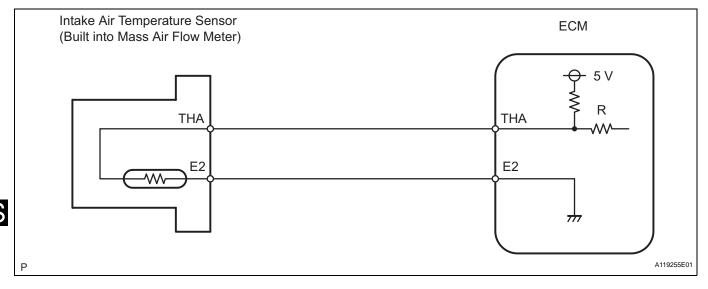
TYPICAL MALFUNCTION THRESHOLDS

P0110: Intake air temperature sensor range check (fluttering)

Intake air temperature sensor voltage	Less than 0.18 V or more than 4.91 V
(Intake air temperature)	(More than 140°C (284°F) or -40°C (-40°F) or less)

P0112: Intake air temperature sensor range check (low resistance)

	Less than 0.18 V (More than 140°C (284°F))
--	---


P0113: Intake air temperature sensor range check (high resistance)

Intake air temperature sensor voltage	More than 4.91 V
(Intake air temperature)	(-40°C (-40°F) or less)

COMPONENT OPERATING RANGE

Intake air temperature sensor resistance	98.5 Ω (140°C (284°F)) to 156 kΩ (-40°C (-40°F))
--	--

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

- If DTCs related to different systems that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1	READ OUTPUT DTC	
	(a (b	
	(c) Enter the following menus: DIAGNOSIS / ENHANCED

- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (d) Read DTCs. Result

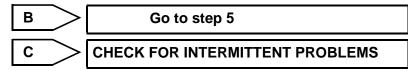
Display (DTC Output)	Proceed To
P0110/24	Α
P0112/24	В
P0113/24	C

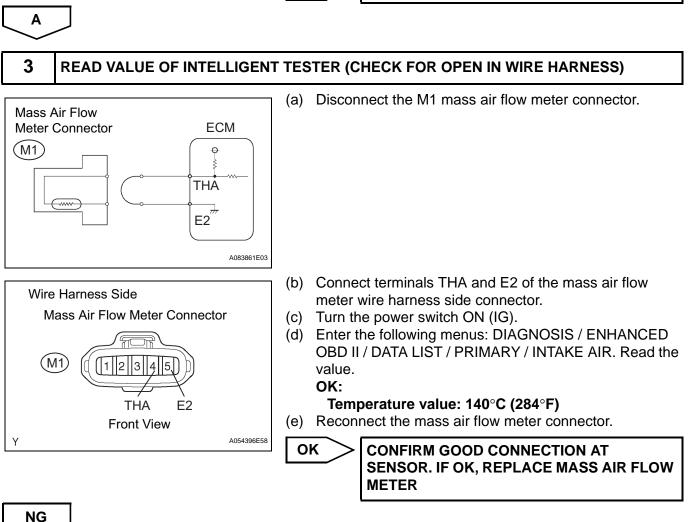
В	Go to step 5
C	Go to step 3

```
A
```

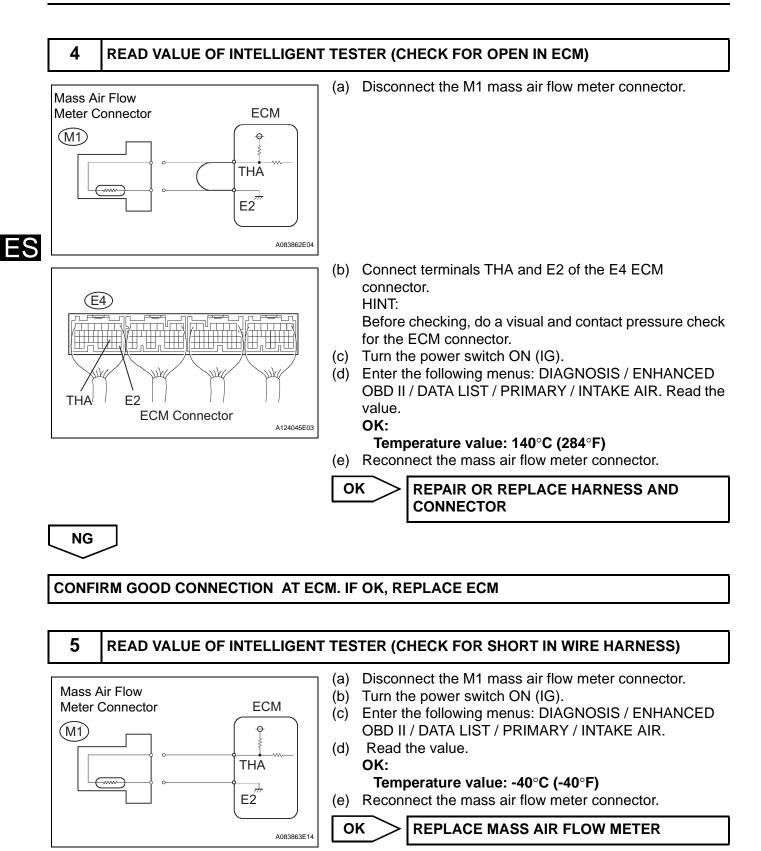
2

READ VALUE OF INTELLIGENT TESTER (INTAKE AIR TEMPERATURE)

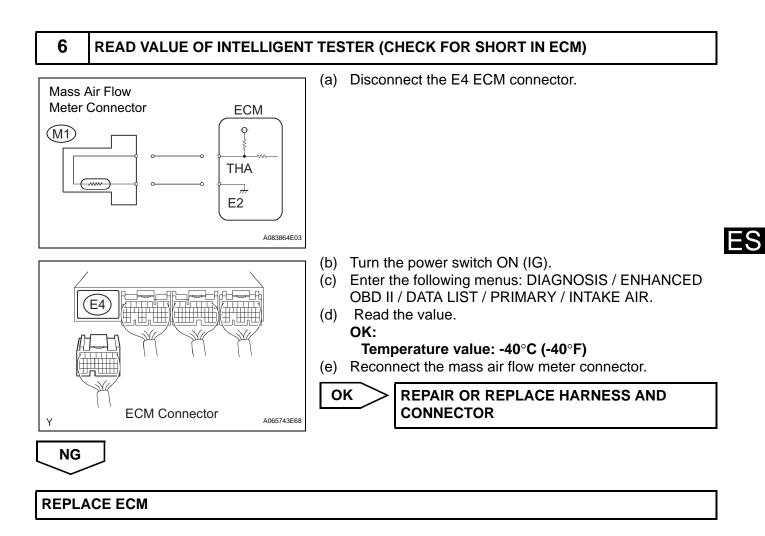

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.


- ES-95
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY / INTAKE AIR.
- (e) Read the value.
 Temperature value:
 Same as the ambient air temperature.
 Result

Temperature Displayed	Proceed to
-40°C (-40°F)	A
140°C (284°F)	В
OK (Same as ambient air temperature)	C


HINT:

- If there is an open circuit, the intelligent tester indicates -40°C (-40°F).
- If there is a short circuit, the intelligent tester indicates 140°C (284°F).



ES

NG

DTC	P0115	Engine Coolant Temperature Circuit
DTC	P0117	Engine Coolant Temperature Circuit Low Input
DTC	P0118	Engine Coolant Temperature Circuit High Input

DESCRIPTION

A thermistor is built in the engine coolant temperature sensor and changes its resistance value according to the engine coolant temperature.

The structure of the sensor and connection to the ECM is the same as those of the intake air temperature sensor.

HINT:

If the ECM detects DTC P0115, P0117 or P0118, it operates the fail-safe function in which the engine coolant temperature is assumed to be 80°C (176°F).

DTC No.	DTC Detection Condition	Trouble Area
P0115	Open or short in engine coolant temperature sensor circuit for 0.5 seconds	 Open or short in engine coolant temperature sensor circuit Engine coolant temperature sensor ECM
P0117	Short in engine coolant temperature sensor circuit for 0.5 seconds	 Short in engine coolant temperature sensor circuit Engine coolant temperature sensor ECM
P0118	Open in engine coolant temperature sensor circuit for 0.5 seconds	 Open in engine coolant temperature sensor circuit Engine coolant temperature sensor ECM

HINT:

After confirming DTC P0115, P0117 or P0118, confirm the engine coolant temperature from DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY using the intelligent tester.

Temperature Displayed	Malfunction	
-40°C (-40°F)	Open circuit	
140°C (284°F)	Short circuit	

MONITOR DESCRIPTION

The engine coolant temperature (ECT) sensor is used to monitor the engine coolant temperature. The ECT sensor has a thermistor that varies its resistance depending on the temperature of the engine coolant. When the coolant temperature is low, the resistance in the thermistor increases. When the temperature is high, the resistance drops. The variations in resistance are reflected in the voltage output from the sensor. The ECM monitors the sensor voltage and uses this value to calculate the engine coolant temperature. When the sensor output voltage deviates from the normal operating range, the ECM interprets this as a fault in the ECT sensor and sets a DTC.

Example:

When the ECM calculates that the ECT is -40°C (-40°F), or more than 140°C (284°F), and if either condition continues for 0.5 second or more, the ETC will set a DTC.

MONITOR STRATEGY

Related DTCs	P0115: Engine coolant temperature sensor range check (fluttering)
	P0117: Engine coolant temperature sensor range check (low
	resistance)
	P0118: Engine coolant temperature sensor range check (high
	resistance)

Required sensors/components	Engine coolant temperature sensor	
Frequency of operation	Continuous	
Duration	0.5 seconds	
MIL operation	Immediately	
Sequence of operation	None	

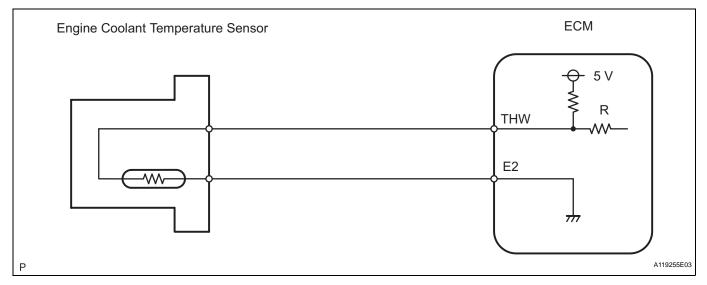
TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	None
--	------

TYPICAL MALFUNCTION THRESHOLDS

P01	15:
-----	-----

Engine coolant temperature sensor voltage (coolant temperature)	Less than 0.14 V or more than 4.91 V (More than 140°C (284°F) or -40°C (-40°F) or less)	
P0117:		
Engine coolant temperature sensor voltage (coolant temperature)	Less than 0.14 V (More than 140°C (284°F))	
20118:		
Engine coolant temperature sensor voltage	More than 4.91 V	


(-40°C (-40°F) or less)

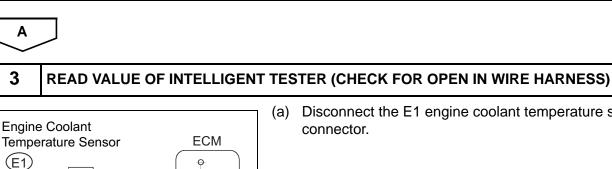
COMPONENT OPERATING RANGE

Engine coolant temperature sensor resistance	79 Ω (140°C (284°F)) to 156 k Ω (-40°C (-40°F))
--	---

WIRING DIAGRAM

(coolant temperature)

INSPECTION PROCEDURE


HINT:

- If DTCs related to different systems that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

-				
1	READ OUTPUT DTC			
		 (a) Connect the intelligent test (b) Turn the power switch ON tester ON. (c) Enter the following menus OBD II / DTC INFO / CUF (d) Read DTCs. Result 	I (IG) and turn the intelligent	
		Display (DTC Output)	Proceed To	
		P0115/24	A	
		P0117/24	В	
		P0118/24	C	
		B Go to ste	ep 5	
		C Go to sto	ep 3	
A	7			
\sim				
2 READ VALUE OF INTELLIGENT TESTER (ENGINE COOLANT TEMPERATURE)				
		 (a) Connect the intelligent tester to the DLC3. (b) Turn the power switch ON (IG). (c) Turn the intelligent tester ON. (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY / COOLANT TEMP. (e) Read the value. (f) Measure the coolant temperature using a thermometer and compare the value with the value displayed on the intelligent tester. Temperature value: Almost same as the actual engine coolant temperature. Result 		
		Temperature Displayed	Proceed to	
		-40°C (-40°F)	A	
		140°C (284°F) OK (Same as actual engine coolant	B C	
		temperature)		
	 HINT: If there is an open circuit, the intelligent tester indicates -40°C (-40°F). If there is a short circuit, the intelligent tester indicates 140°C (284°F). 			
		B Go to ste	ep 5	

С

CHECK FOR INTERMITTENT PROBLEMS

Engine Coolant Temperature Sensor

2

Front View

THW

E2

A083861E04

A082813E01

(a) Disconnect the E1 engine coolant temperature sensor connector.

- (b) Connect terminals 1 and 2 of the engine coolant temperature sensor wire harness side connector.
- (c) Turn the power switch ON (IG).
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY / COOLANT TEMP. Read the value. OK:

Temperature value: 140°C (284°F)

(e) Reconnect the engine coolant temperature sensor connector.

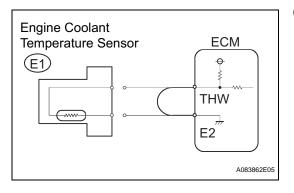
> **CONFIRM GOOD CONNECTION AT** SENSOR. IF OK, REPLACE ENGINE COOLANT TEMP. SENSOR

NG

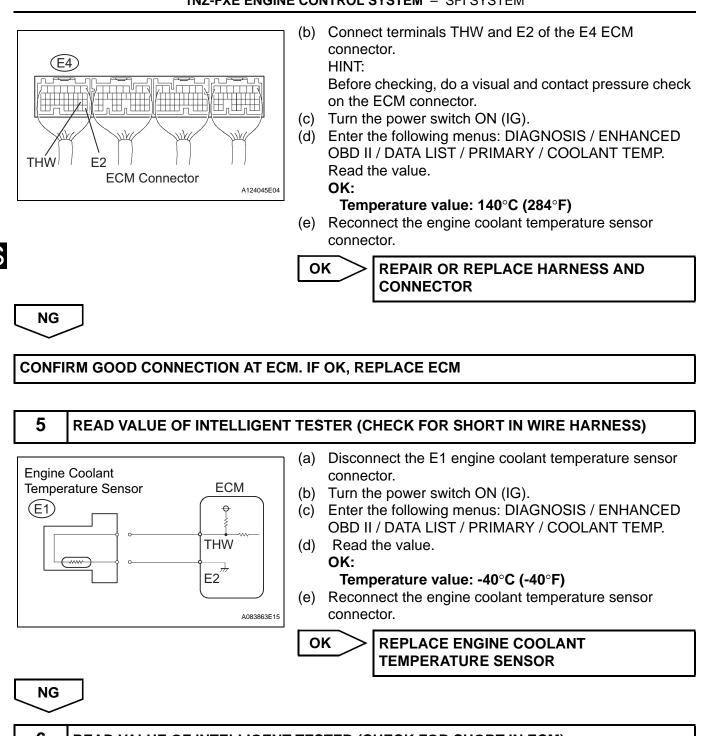
4

Α

3

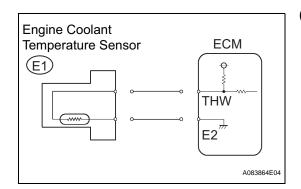

Wire Harness Side

(E1)

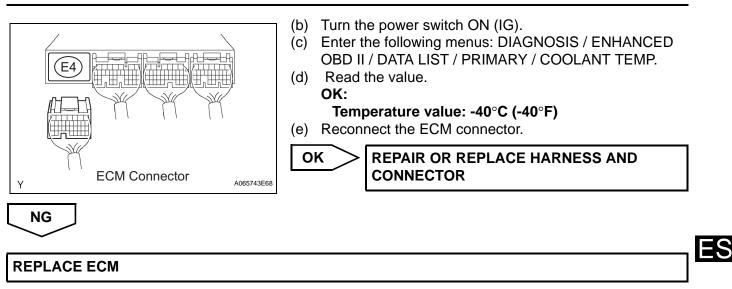

Connector

READ VALUE OF INTELLIGENT TESTER (CHECK FOR OPEN IN ECM)

OK



(a) Disconnect the E1 engine coolant temperature sensor connector.



READ VALUE OF INTELLIGENT TESTER (CHECK FOR SHORT IN ECM)

(a) Disconnect the E4 ECM connector.

P0116

Engine Coolant Temperature Circuit Range / Performance Problem

DESCRIPTION

Refer to DTC P0115 (see page ES-91).

DTC No.	DTC Detection Condition	Trouble Area
P0116	If the engine coolant temperature (ECT) was between 35°C (95°F) and 60°C (140°F) when starting the engine, and conditions (a) and (b) are met (2 trip detection logic): (a) Vehicle is driven at varying speeds (acceleration and deceleration) for more than 250 seconds (b) ECT remains within 3°C (5.4°F) of the engine starting temperature	Engine coolant temperature sensor
P0116	If the engine coolant temperature was more than 60°C (140°F) at engine start, and conditions (a) and (b) are met (6 trip detection logic): (a) Vehicle is driven at varying speeds (under acceleration and deceleration) (b) Engine coolant temperature remains within 1°C (1.8°F) of the engine starting temperature, and this is successively recorded 6 times	Engine coolant temperature sensor

MONITOR DESCRIPTION

The engine coolant temperature (ECT) sensor is used to monitor the engine coolant temperature. The ECT sensor has a thermistor that varies its resistance depending on the temperature of the engine coolant. When the coolant temperature is low, the resistance in the thermistor increases. When the temperature is high, the resistance drops. The variations in resistance are reflected in the voltage output from the sensor. The ECM monitors the sensor voltage and uses this value to calculate the engine coolant temperature. When the sensor output voltage deviates from the normal operating range, the ECM interprets this as a fault in the ECT sensor and sets a DTC. Examples:

1) Upon starting the engine, the coolant temperature (ECT) was between 35°C (95°F) and 60°C (140°F). If after driving for 250 seconds, the ECT still remains within 3°C (5.4°F) of the starting temperature, a DTC will be set (2 trip detection logic).

2) Upon starting the engine, the coolant temperature (ECT) was over 60°C (140°F). If, after driving for 250 seconds, the ECT still remains within 1°C (1.8°F) of the starting temperature, a DTC will be set (6 trip detection logic).

MONITOR STRATEGY

Case 1: ECT is between 35 and 60°C (95 and 140°F)

Related DTCs	P0116		
Required sensors/components (Main) Engine coolant temperature sensor			
Required sensors/components (Related) -			
Frequency of operation	Once per driving cycle		
Duration	1 second		
MIL operation	2 driving cycles	2 driving cycles	
Sequence of operation	None		

Case 2: ECT is higher than 60°C (140°F)

Related DTCs	P0116
Required sensors/components (Main)	Engine coolant temperature sensor

Required sensors/components (Related)	-	
Frequency of operation	Once per driving cycle	
Duration	0.032 second	
MIL operation	6 driving cycles	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

Case 1: ECT is between 35 and 60°C (95 and 140°F)

Monitor will run whenever these DTCs are not present	P0100, P0101, P0102, P0103	
Cumulative idle off period	250 seconds or more	
Frequency of the following condition (a) is met	10 times	
(a) Vehicle speed increase	19 mph (30 km/h) or more	
Engine coolant temperature	35 to 60°C (95 to 140°F)	
Intake air temperature	-6.7°C (20°F) or higher	

Case 2: ECT is higher than 60°C (140°F)

	-
Monitor will run whenever these DTCs are not present	P0100, P0101, P0102, P0103
Engine coolant temperature	60°C (140°F) or higher
Intake air temperature	-6.7°C (20°F) or higher
Frequency that vehicle is driven by the following conditions (a) to (d) is met	Once
(a) Engine idling period	20 seconds or more
(b) Acceleration period: Duration that vehicle speed reaches to 70 km/ h (43.5 mph)	Within 40 seconds
(c) Intake air temperature: Duration that vehicle is driven by 65 to 70 km/h (40 to 43.5 mph)	30 seconds or more
(d) Intake air temperature: Duration that vehicle speed drops to 3 km/h (2 mph)	Within 35 seconds

TYPICAL MALFUNCTION THRESHOLDS

Case 1: ECT is between 35 and 60°C (95 and 140°F)

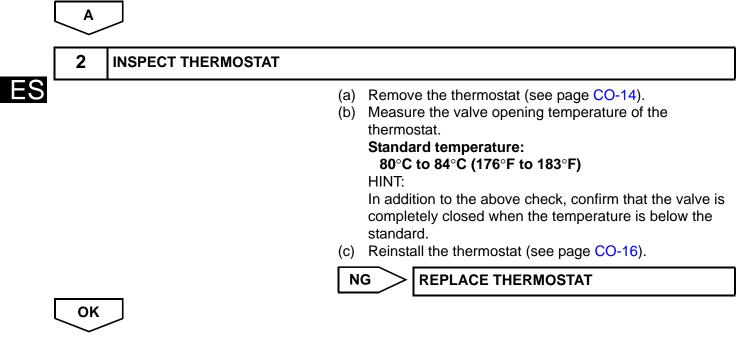
Engine coolant temperature change after engine start Less than 3°C (5.4°F)		
Case 2: ECT is higher than 60°C (140°F)		

COMPONENT OPERATING RANGE

Engine coolant temperature	Changing with the actual engine coolant temperature
----------------------------	---

WIRING DIAGRAM

Refer to DTC P0115 (see page ES-92).


INSPECTION PROCEDURE

- 1 READ OUTPUT DTC
- (a) Connect an intelligent tester to the DLC3.
- (b) Turn the power switch on (IG) and turn the tester on.(c) Select the following menu items: DIAGNOSIS /
- ENHANCED OBD II / DTC INFO / CURRENT CODES.

(d) Read DTCs. Result

Display (DTC Output)	Proceed To
P0116	A
P0116 and other DTCs	В

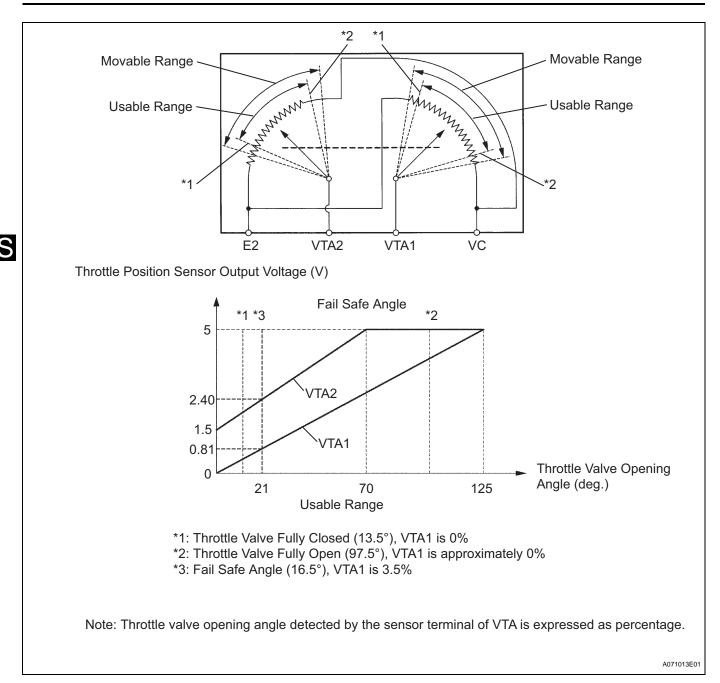
REPLACE ENGINE COOLANT TEMPERATURE SENSOR

DTC	P0120	Throttle Pedal Position Sensor / Switch "A" Cir- cuit Malfunction
DTC	P0122	Throttle / Pedal Position Sensor / Switch "A" Circuit Low Input
DTC	P0123	Throttle / Pedal Position Sensor / Switch "A" Circuit High Input
DTC	P0220	Throttle / Pedal Position Sensor / Switch "B" Circuit
DTC	P0222	Throttle / Pedal Position Sensor / Switch "B" Circuit Low Input
DTC	P0223	Throttle / Pedal Position Sensor / Switch "B" Circuit High Input
DTC	P2135	Throttle / Pedal Position Sensor / Switch "A" / "B" Voltage Correlation

DESCRIPTION

HINT:

- This electrical throttle system does not use a throttle cable.
- This is the troubleshooting procedure of the throttle position sensor.


The throttle position sensor is mounted on the throttle body and it has 2 sensor terminals to detect the throttle opening angle and malfunction of the throttle position sensor itself.

The voltage applied to terminals VTA and VTA2 of the ECM changes between 0 V and 5 V in proportion to the opening angle of the throttle valve. The VTA is a signal to indicate the actual throttle valve opening angle which is used for the engine control, and the VTA2 is a signal to indicate the information about the opening angle which is used for detecting malfunction of the sensor.

The ECM judges the current opening angle of the throttle valve from these signals input from terminals VTA and VTA2, and the ECM controls the throttle motor to make the throttle valve angle properly in response to the driving condition.

When malfunction is detected, the throttle valve is locked at a certain opening angle. Also, the whole electronically controlled throttle operation is canceled until the system returns to normal and the power switch is turned OFF.

ES

DTC No.	DTC Detection Condition	Trouble Area
-	Conditions of DTC P0120, P0122, P0123, P0220, P0222 or P0223 continues for 2 seconds or more when Idle is ON	-
P0120	Detection conditions for DTCs P0122 and P0123 are not satisfied but condition (a) is satisfied (a) VTA is 0.2V or less, or 4.535 V or more	 Open or short in throttle position sensor circuit Throttle position sensor ECM
P0122	VTA is 0.2 V or less	 Short in throttle position sensor circuit Throttle position sensor ECM
P0123	VTA is 4.535 V or more	 Open in throttle position sensor circuit Throttle position sensor ECM
P0220	Detection conditions for DTCs P0222 and P0223 are not satisfied but condition satisfied VTA2 is 1.75 V or less, or VTA2 is 4.8 V or more	 Open or short in throttle position sensor circuit Throttle position sensor ECM

DTC No.	DTC Detection Condition	Trouble Area
P0222	VTA2 is 1.75 V or less	 Short in throttle position sensor circuit Throttle position sensor ECM
P0223	VTA2 is 4.8 V or more when VTA is 0.2 or more and 2.02 V or less	 Open in throttle position sensor circuit Throttle position sensor ECM
P2135	Condition (a) continues for 0.5 seconds or more, or condition (b) continues for 0.4 seconds or more: (a) Difference between VTA and VTA2 is 0.02 V or less (b) VTA is 0.2 V or less and VTA2 is 1.75 V or less	 Open or short in throttle position sensor circuit Throttle position sensor ECM

HINT:

DTC No.	Main Trouble Area
P0122	 Throttle position sensor Open in VTA1 circuit VC circuit open (when the VC circuit is open, DTCs P0222 and P2135 are also output simultaneously) ECM
P0123	 Throttle position sensor (built in throttle body) Open in VTA circuit Open in E2 circuit VC and VTA circuits are short-circuited ECM
P0222	 Throttle position sensor Open in VTA2 circuit VC circuit open (when the VC circuit is open, DTCs P0122 and P2135 are also output simultaneously)
P0223	Throttle position sensor
P2135	 VTA1 and VTA2 circuits are short-circuited Open in VC circuit Throttle position sensor

NOTICE:

When a malfunction is detected, the throttle valve is locked at a certain opening angle. Also, the whole electronically controlled throttle operation is canceled until the system returns to normal and the power switch is turned OFF.

HINT:

- After confirming DTCs, confirm condition of the throttle valve opening angle (THROTTLE POS) and the closed throttle position switch (THROTTLE POS #2) using the intelligent tester.
- THROTTLE POS means the VTA1 signal (expressed as percentage), and THROTTLE POS#2 means the VTA2 signal (expressed as volts).

Tester display	Accelerator pedal released	Accelerator pedal depressed
THROTTLE POS	8 to 20%	64 to 96%
THROTTLE POS #2	1.5 to 2.9 V	3.5 to 5.5 V

MONITOR DESCRIPTION

The ECM uses the throttle position sensor to monitor the throttle valve opening angle.

(a) There is a specific voltage difference between VTA1 and VTA2 for each throttle opening angle.

(b) VTA1 and VTA2 each have a specific voltage operating range.

(c) VTA1 and VTA2 should never be close to the same voltage level.

If the difference between VTA1 and VTA2 is incorrect (a), the ECM interprets this as a fault and will set a DTC.

If VTA1 or VTA2 is out of the normal operating range (b), the ECM interprets this as a fault and will set a DTC.

If VTA1 is within 0.02 V of VTA2 (c), the ECM interprets this as a short circuit in the throttle position sensor system and will set a DTC.

MONITOR STRATEGY

Related DTCs	P0120: Throttle position sensor (sensor 1) range check (fluttering) P0122: Throttle position sensor (sensor 1) range check (low voltage) P0123: Throttle position sensor (sensor 1) range check (high voltage) P0220: Throttle position sensor (sensor 2) range check (fluttering) P0222: Throttle position sensor (sensor 2) range check (low voltage) P0223: Throttle position sensor (sensor 2) range check (low voltage) P0223: Throttle position sensor (sensor 2) range check (high voltage) P0235: Throttle position sensor range check (correlation)
Required sensors/components	Throttle position sensor
Frequency of operation	Continuous
Duration	2 seconds
MIL operation	Immediately
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	None
--	------

TYPICAL MALFUNCTION THRESHOLDS

P0120:	
VTA1 voltage	0.2 V or less or 4.535 V or more
P0122:	
VTA1 voltage	0.2 V or less
P0123:	
VTA1 voltage	4.535 V or more
P0220:	
VTA2 voltage	1.75 V or less or 4.8 V or more
P0222:	
VTA2 voltage	1.75 V or less
P0223:	
VTA2 voltage	4.8 V or more (VTA voltage is 0.2 and 2.02 V)
P2135:	
Different between VTA1 and VTA2 voltage	0.02 V or less
Both of the following conditions are met:	(a) and (b)

COMPONENT OPERATING RANGE

(a) VTA1 voltage

(b) VTA2 voltage

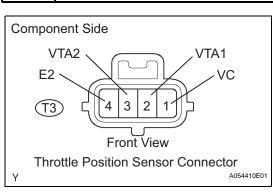
Throttle position sensor VTA1 voltage	0.6 to 3.96 V
Throttle position sensor VTA2 voltage	2.25 to 5.0 V

0.2 V or less

1.75 V or less

WIRING DIAGRAM

INSPECTION PROCEDURE


HINT:

1

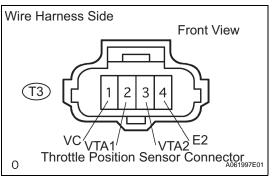
• If DTCs related to different systems that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.

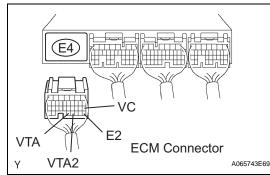
INSPECT THROTTLE POSITION SENSOR (RESISTANCE)

• Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

- (a) Disconnect the T3 throttle position sensor connector.(b) Measure the resistance between the terminals of the
 - throttle position sensor. Standard resistance

Tester Connection	Specified Condition
1 (VC) - 4 (E2)	1.2 to 3.2 kΩ at 20°C (68°F)
2 (VTA1) - 4 (E2)	1.8 to 10.5 kΩ at 20°C (68°F)
3 (VTA2) - 4 (E2)	1.8 to 10.5 kΩ at 20°C (68°F)


REPLACE THROTTLE W/MOTOR BODY ASSEMBLY



2

ES

CHECK HARNESS AND CONNECTOR (ECM - THROTTLE POSITION SENSOR)

(a) Disconnect the T3 throttle position sensor connector.

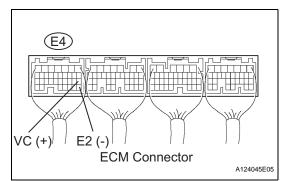
- (b) Disconnect the ECM E4 connector.
- (c) Measure the resistance between the wire harness side connectors.

Standard resistance (Check for open)

Tester Connection	Specified Condition
T3-1 (VC) - E4-18 (VC)	Below 1 Ω
T3-2 (VTA1) - E4-32 (VTA)	Below 1 Ω
T3-3 (VTA2) - E4-31 (VTA2)	Below 1 Ω
T3-4 (E2) - E4-28 (E2)	Below 1 Ω

Standard resistance (Check for short)

Tester Connection	Specified Condition
E4-18 (VC) - E4-28 (E2)	10 k Ω or higher
E4-32 (VTA) - E4-28 (E2)	10 k Ω or higher
E4-31 (VTA2) - E4-28 (E2)	10 k Ω or higher


(d) Reconnect the ECM connector.

OK

3

CHECK ECM (VC - E2)

- (a) Turn the power switch ON (IG).
- (b) Measure the voltage between terminals VC and E2 of the ECM connector.
 Standard voltage

Tester Connection	Specified Condition
E4-18 (VC) - E4-28 (E2)	4.5 to 5.5 V
	·

ОК

REPLACE THROTTLE W/MOTOR BODY ASSEMBLY

ES

DTC	P0121
DIC	FUIZI

Throttle / Pedal Position Sensor / Switch "A" Circuit Range / Performance Problem

DESCRIPTION

Refer to DTC P0120 (see page ES-100).

HINT:

This is the purpose of troubleshooting the throttle position sensor.

DTC No.	DTC Detection Condition	Trouble Area
P0121	Difference between VTA1 and VTA2 is out of threshold for 2 seconds	Throttle position sensor

ES

MONITOR DESCRIPTION

The ECM uses the throttle position sensor to monitor the throttle valve opening angle.

This sensor has two signals, VTA1 and VTA2. VTA1 is used to detect the throttle opening angle and VTA2 is used to detect malfunction in VTA1. There are several checks that the ECM confirms proper operation of the throttle position sensor and VTA1.

There is a specific voltage difference between VTA1 and VTA2 for each throttle opening angle. If VTA1 or VTA2 is out of the normal operating range, the ECM interprets this as a fault and will set a DTC. If VTA1 is within 0.02 V of VTA2, the ECM interprets this as a short circuit in the throttle position sensor system and will set a DTC.

If the voltage output difference of the VTA1 and VTA2 deviates from the normal operating range, the ECM interprets this as malfunction of the throttle position sensor. The ECM will turn on the MIL and a DTC is set.

FAIL-SAFE

If the Electronic Throttle Control System (ETCS) has malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel injection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue to drive.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the power switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

MONITOR STRATEGY

Related DTCs	P0121: Throttle position sensor rationality	
Required sensors/components	Throttle position sensor	
Frequency of operation	Continuous	
Duration	2 seconds	
MIL operation	Immediately	
Sequence of operation	None	

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	None
VTA2 voltage	Less than 4.6 V

TYPICAL MALFUNCTION THRESHOLDS

Different between VTA1 and VTA2	Less than 0.8 V and more than 1.6 V
[VTA1 - (VTA2 x 0.8 to 1.2)]*	
*: Corrected by learning value	

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1	CHECK ANY OTHER DTCS OUTPUT		
	(a) (b) (c) (d)	Select the following me ENHANCED OBD II / I	tester to the DLC3. on (IG) and turn the tester on. enu items: DIAGNOSIS / DTC INFO / CURRENT CODES.
	Dis	play (DTC output)	Proceed To
	P0	121	A
	P0	121 and other DTCs	В

A

REPLACE THROTTLE W/MOTOR BODY ASSEMBLY

DTC	P0125	Insufficient Coolant Temperature for Closed Loop Fuel Control
-----	-------	--

DESCRIPTION

Refer to DTC P0115 (see page ES-91).

DTC No.	DTC Detection Condition	Trouble Area
P0125	Engine coolant temperature hardly changes for 58 seconds after engine start (2 trip detection logic)	Cooling systemEngine coolant temperature sensorThermostat
P0125	Engine coolant temperature hardly changes for 109 seconds after engine start (2 trip detection logic)	Cooling systemEngine coolant temperature sensorThermostat
P0125	Engine coolant temperature hardly changes for 20 minutes after engine start (2 trip detection logic)	Cooling systemEngine coolant temperature sensorThermostat

HINT:

ECT represents engine coolant temperature, and IAT represents intake air temperature.

MONITOR DESCRIPTION

The engine coolant temperature (ECT) sensor is used to monitor the temperature of the engine coolant. The resistance of the sensor varies with the actual engine coolant temperature. The ECM applies voltage to the sensor and the varying resistance of the sensor causes the signal voltage to vary. The ECM monitors the ECT signal voltage after engine start-up. If, after sufficient time has passed, the sensor still reports that the engine is not warm enough for closed-loop fuel control, the ECM interprets this as a fault in the sensor or cooling system and sets a DTC.

Example:

The engine coolant temperature was 0°C (32°F) at engine start. After driving 5 minutes, the ECT sensor still indicates that the engine is not warm enough to begin the air-fuel ratio feedback control. The ECM interprets this as a fault in the sensor or cooling system and will set a DTC.

MONITOR STRATEGY

Related DTCs	P0125
Required sensors/components (Main)	Engine coolant temperature sensor, cooling system, thermostat
Required sensors/components (Related)	Cooling system, thermostat
Frequency of operation	Once per driving cycle
Duration	58 seconds (Case 1) 109 seconds (Case 2) 1,200 seconds (Case 3)
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

Case 1

	P0100 - P0103 (MAF meter) P0110 - P0113 (IAT sensor) P0115 - P0118 (ECT sensor)
Engine coolant or intake air temperature at engine start	1.66°C (35°F) or more

Case 2

Monitor will run whenever these DTCs are not present	P0100 - P0103 (MAF meter) P0110 - P0113 (IAT sensor) P0115 - P0118 (ECT sensor)
Engine coolant or intake air temperature at engine start	Between -9.5°C (15°F) and 1.66°C (35°F)

Case 3	
Monitor will run whenever these DTCs are not present	P0100 - P0103 (MAF meter) P0110 - P0113 (IAT sensor) P0115 - P0118 (ECT sensor)
Engine coolant or intake air temperature at engine start	Lower than -9.5°C (15°F)

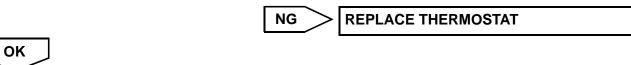
TYPICAL MALFUNCTION THRESHOLDS

Engine coolant temperature

Less than 10°C (50°F)

WIRING DIAGRAM

Refer to DTC P0115 (see page ES-92).


INSPECTION PROCEDURE

HINT:

^--- **^**

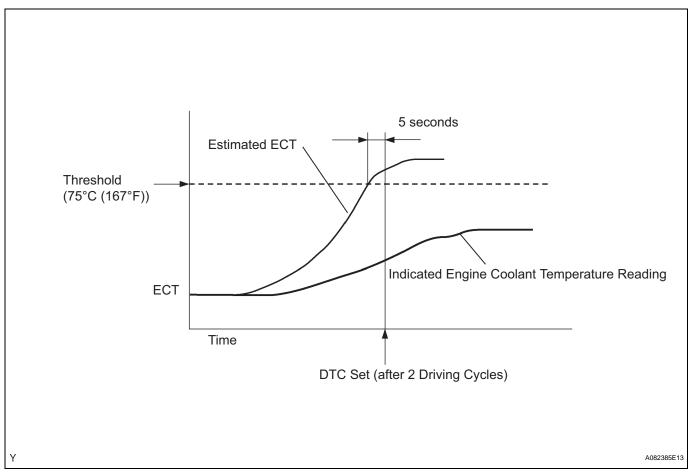
- If DTCs P0115, P0116, P0117, P0118 and P0125 are output simultaneously, engine coolant temperature sensor circuit may be open or short. Perform troubleshooting on DTC P0115, P0117 or P0118 first.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1	CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P0125)			
	- -	 (a) Connect the intelligent tester to the DLC3. (b) Turn the power switch ON (IG). (c) Turn the intelligent tester ON. (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES. (e) Read DTCs using the intelligent tester. Result 		
		Display (DTC output) Proceed to		
		P0125 A		
		P0125 and other DTCs B		
		HINT: If any other codes besides P0125 are output, perform troubleshooting for those DTCs first. B GO TO RELEVANT DTC CHART		
2	INSPECT THERMOSTAT			
		OK:		

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

Coolant Thermostat (Coolant Temperature Below Thermostat Regulating Temperature)

DESCRIPTION


HINT:

This is the purpose of detecting the "thermostat" malfunction.

If the engine coolant temperature (ECT) does not reach 75°C (167°F) despite sufficient warm-up time has elapsed.

DTC No.	DTC Detection Condition	Trouble Area	
P0128	Conditions (a), (b) and (c) are met: (a) Cold start (b) After sufficient warm-up time has elapsed (c) Engine coolant temperature is less than 75°C (167°F)	 Thermostat Cooling system Engine coolant temperature sensor ECM 	

MONITOR DESCRIPTION

The ECM estimates the engine coolant temperature (ECT) based on engine starting temperature, engine loads and engine speed. The ECM then compares the estimated ECT with the actual ECT. When the estimated ECT reaches 75°C (167°F), the ECM check the actual ECT. If the actual ECT is less than 75°C (167°F), the ECM will interpret this as a fault in thermostat or the engine cooling system and set a DTC.

MONITOR STRATEGY

Related DTCs P0128: Thermostat

Required sensors/components	Main: Engine coolant temperature sensor, engine cooling system, thermostat Related: Intake air temperature sensor, vehicle speed sensor
Frequency of operation	Once per driving cycle
Duration	15 minutes
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

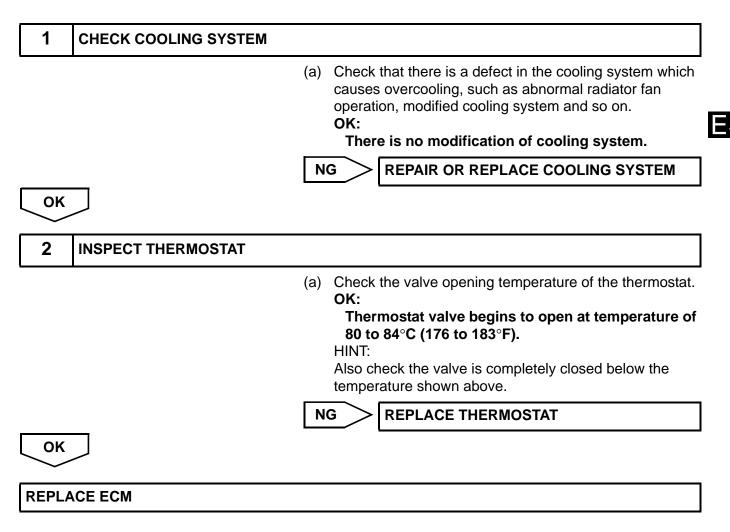
The monitor will run whenever the following DTCs are not present	P0010 (VVT OCV)
	P0011 (VVT system 1 - Advance)
	P0012 (VVT system 1 - Retard)
	P0031, P0032 (A/F sensor heater - Sensor 1)
	P0100 - P0103 (MAF meter)
	P0110 - P0113 (IAT sensor)
	P0115 - P0118 (ECT sensor)
	P0125 (Insufficient ECT for closed loop)
	P0171, P0172 (Fuel system) P0300 - P0304 (Misfire)
	P0305 (CKP sensor)
	P0340, P0341 (CMP sensor)
	P0351-P0354 (Igniter)
	P0500 (VSS)
	P2196 (A/F sensor - Rationality)
	P2A00 (A/F sensor - Slow response)
When one of the following condition 1 or 2 is met	-
1. When all of the following conditions are met	-
Battery voltage	11 V or more
Intake air temperature (at engine start)	-10°C(14°F) or more, and 56°C (132.8°F) or less
Engine coolant temperature (at engine start)	-10°C(14°F) or more, and 56°C (132.8°F) or less
ECT at engine start - IAT at engine start	-15 to 7°C (-27 to 12.6°F)
2. When all of the following conditions are met	-
ECT at engine start - IAT at engine start	Higher than 7°C (12.6°F)
ECT at engine start	56°C (132.8°F) or lower
IAT at engine start	-10°C (14°F) or higher
Accumulated time that vehicle speed is 128 km/h (80 mph) or more	Less than 20 seconds

TYPICAL MALFUNCTION THRESHOLDS

(1) Estimated engine coolant temperature	75°C(167°F) or more
(2) Estimated engine coolant temperature sensor output value	Less than 75°C (167°F)
Duration of both (1) and (2)	5 seconds or more

COMPONENT OPERATING RANGE

Engine coolant temperature sensor output value after warm-up	75°C(167°F) or more
--	---------------------

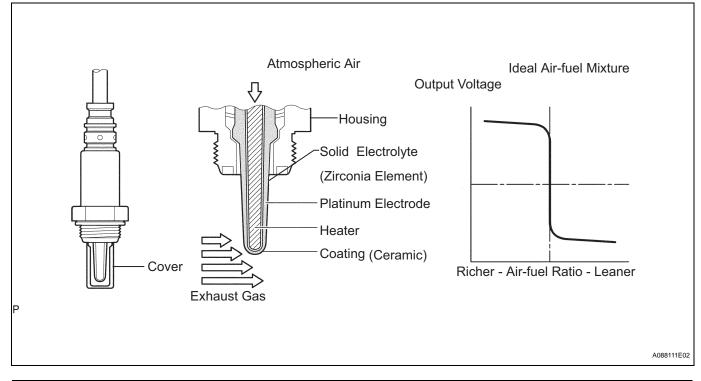

MONITOR RESULT

Refer to detailed information (see page ES-15).

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.


DTC	P0136	Oxygen Sensor Circuit Malfunction (Bank 1 Sensor 2)
DTC	P0137	Oxygen Sensor Circuit Low Voltage (Bank 1 Sensor 2)
DTC	P0138	Oxygen Sensor Circuit High Voltage (Bank 1 Sensor 2)

DESCRIPTION

The heated oxygen sensor is used to monitor oxygen concentration in the exhaust gas. For optimum catalytic converter operation, the air-fuel mixture must be maintained near the ideal "stoichiometric" ratio. The oxygen sensor output voltage changes suddenly in the vicinity of the stoichiometric ratio. The ECM adjusts the fuel injection time so that the air-fuel ratio is nearly stoichiometric ratio.

When the air-fuel ratio becomes LEAN, the oxygen concentration in the exhaust gas increases. The heated oxygen sensor informs the ECM of the LEAN condition (low voltage, i.e. less than 0.45 V). When the air-fuel ratio is RICHER than the stoichiometric air-fuel ratio, the oxygen will be vanished from the exhaust gas. The heated oxygen sensor informs the ECM of the RICH condition (high voltage, i.e. more than 0.45 V).

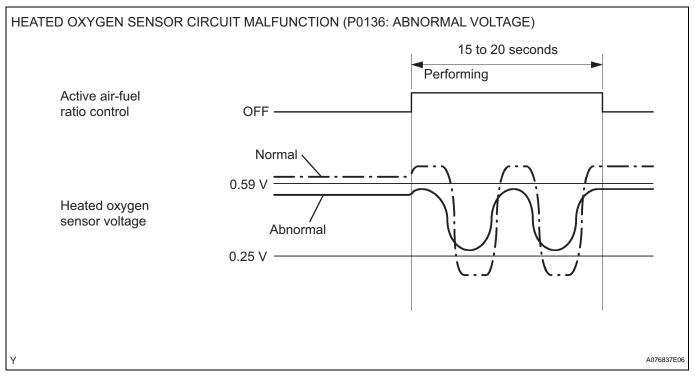
The heated oxygen sensor includes a heater which heats the zirconia element. The heater is controlled by the ECM. When the intake air volume is low (the temperature of the exhaust gas is low), current flows to the heater in order to heat the sensor for the accurate oxygen concentration detection.

DTC No.	DTC Detection Condition	Trouble Area
P0136	 Problem in heated oxygen sensor voltage Heated oxygen sensor impedance is too low 	 Heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Heated oxygen sensor heater (bank 1 sensor 2) A/F sensor (bank 1 sensor 1) A/F sensor heater

DTC No.	DTC Detection Condition	Trouble Area
P0137	 Heated oxygen sensor impedance is too high Problem in heated oxygen sensor output (low voltage side) 	 Heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Heated oxygen sensor heater (bank 1 sensor 2) A/F sensor (bank 1 sensor 1) A/F sensor heater
P0138	Problem in heated oxygen sensor output (high voltage side)	 Heated oxygen sensor (bank 1 sensor 2) circuit Heated oxygen sensor (bank 1 sensor 2) Heated oxygen sensor heater (bank 1 sensor 2) A/F sensor (bank 1 sensor 1) A/F sensor heater

MONITOR DESCRIPTION

Active Air-Fuel Ratio Control

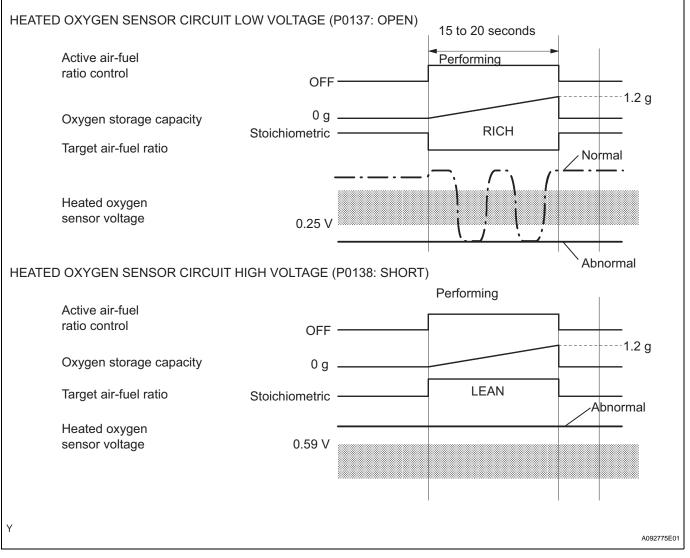

Usually the ECM performs the air-fuel ratio control so that the A/F sensor output indicates a near stoichiometric air-fuel ratio. This vehicle includes "active air-fuel ratio control" besides the regular air-fuel ratio control. The ECM performs the "active air-fuel ratio control" to detect deterioration in a catalyst and the heated oxygen sensor malfunction. (Refer to the diagram below)

The "Active air-fuel ratio control" is performed for approximately 15 to 20 seconds during a vehicle driving with a warm engine. Under the "active air-fuel ratio control", the air-fuel ratio is forcibly regulated to go LEAN or RICH by the ECM.

If the ECM detects malfunction, it is recorded in the following DTCs: DTC P0136 (Abnormal Voltage Output), DTC P0137 (Circuit Open) and P0138 (Circuit Short).

Abnormal Voltage Output of Heated Oxygen Sensor (DTC P0136)

As the ECM is performing the "active air-fuel ratio control", the air-fuel ratio is forcibly regulated to go RICH or LEAN. If the sensor is not functioning properly, the voltage output variation is smaller. Under the "active air-fuel ratio control", if the maximum voltage output of the heated oxygen sensor is less than 0.59 V, or the minimum voltage output is 0.25 V or more, the ECM determines that it is abnormal voltage output of the sensor (DTC P0136).

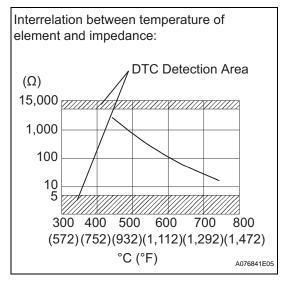


Under "active air-fuel ratio control", the ECM calculates the Oxygen Storage Capacity (OSC)* in the catalyst by forcibly regulating the air-fuel ratio to go RICH (or LEAN).

If the heated oxygen sensor has an open or short, or the voltage output by the sensor noticeably decreases, the OSC will indicate extraordinary high value. Even if the ECM attempts to continue regulating the air-fuel ratio to go RICH (or LEAN), the heated oxygen sensor output does not change. When the value of OSC calculated by the ECM reaches 1.2 gram under the active air-fuel ratio control, although the targeted air-fuel ratio is RICH but the voltage output of the heated oxygen sensor is 0.25 V or less (LEAN), the ECM determines that it is an abnormal low voltage (DTC P0137). Also, the targeted air-fuel ratio is LEAN but the voltage output is 0.59 V or more (RICH), it is determined that the voltage output of the sensor is abnormally high (DTC P0138).

In addition to the OSC detection, if the fluctuation of the sensor voltage output is in a specific narrow range (more than 0.25 V and less than 0.59) despite the ECM ordering the air-fuel ratio to go RICH or LEAN while the OSC is above 1.2 gram, the ECM interprets this as a malfunction in the heated oxygen sensor circuit (DTC P0136).

*Oxygen Storage Capacity (OSC): A catalyst has a capability for storing oxygen. The OSC and the emission purification capacity of the catalyst are mutually related. The ECM judges if the catalyst has deteriorated based on the calculated OSC value (see page ES-177).



HINT:

DTC P0138 is also set if the voltage output from the heated oxygen sensor is more than 1.2 V for 10 seconds or more.

Heated oxygen sensor impedance

During normal feedback control of the air-fuel ratio, there are small variations in the exhaust gas oxygen concentration. In order to continuously monitor the slight variation of the signal from the oxygen sensor while the engine is running, the impedance* of the sensor is measured by the ECM. The ECM detects that there is malfunction in the sensor when the measured impedance deviates from the standard range. *: The effective resistance in an alternating current electrical circuit. HINT:

- The impedance can not be measured with an ohmmeter.
- DTC P0136 indicates deterioration of the heated oxygen sensor. The ECM sets the DTC by calculating the impedance of the sensor after the typical enabling conditions are satisfied (2 driving-cycles).
- DTC P0137 indicates an open or short circuit in the heated oxygen sensor system (2 driving-cycles). The ECM sets this DTC when the impedance of the sensor exceeds the threshold 15 kΩ.

MONITOR STRATEGY

Case 1: Output voltage (Active A/F control method)

Related DTCs	P0136
Required sensors/components (main)	Heated oxygen sensor (bank 1 sensor 2)
Required sensors/components (related)	A/F sensor
Frequency of operation	Once per driving cycle
Duration	20 seconds
MIL operation	1 driving cycles
Sequence of operation	None

Case 2: Low impedance

Related DTCs	P0136
Required sensors/components (main)	Heated oxygen sensor (bank 1 sensor 2)
Required sensors/components (related)	None
Frequency of operation	Continuously
Duration	30 seconds
MIL operation	2 driving cycles
Sequence of operation	None

Case 3: High impedance

Related DTCs	P0137
Required sensors/components (main)	Heated oxygen sensor (bank 1 sensor 2)
Required sensors/components (related)	None
Frequency of operation	Continuously
Duration	155 seconds

MIL operation	2 driving cycles
Sequence of operation	None

Case 4: Low voltage (Active A/F control method)

Related DTCs	P0137
Required sensors/components (main)	Heated oxygen sensor (bank 1 sensor 2)
Required sensors/components (related)	A/F sensor
Frequency of operation	Once per driving cycle
Duration	20 seconds
MIL operation	1 driving cycles
Sequence of operation	None

Case 5: High voltage (Active A/F control method)

Related DTCs	P0138
Required sensors/components (main)	Heated oxygen sensor (bank 1 sensor 2)
Required sensors/components (related)	A/F sensor
Frequency of operation	Once per driving cycle
Duration	20 seconds
MIL operation	1 driving cycles
Sequence of operation	None

Case 6: High voltage

Related DTCs	P0138
Required sensors/components (main)	Heated oxygen sensor (bank 1 sensor 2)
Required sensors/components (related)	None
Frequency of operation	Continuously
Duration	10 seconds
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

Monitor will run whenever these DTCs are not present	P0031, P0032 (A/F sensor heater - Sensor 1)
	P0037, P0038 (O2 sensor heater - Sensor 2)
	P0100 - P0103 (MAF meter)
	P0110 - P0113 (IAT sensor)
	P0115 - P0118 (ECT sensor)
	P0120 - P0223, P2135 (TP sensor)
	P0125 (Insufficient ECT for closed loop)
	P0171, P0172 (Fuel system)
	P0300 - P0304 (Misfire)
	P0335 (CKP sensor)
	P0340, P0341 (CMP sensor)
	P0442 - P0456 (EVAP system)
	P0500 (VSS)
	P2196 (A/F sensor - Rationality)
	P2A00 (A/F sensor - Slow response)

Case 1: Output voltage (Active A/F control method)

Active A/F control	Executing
Active A/F control begins when the following conditions are met	-
Battery voltage	11.5 V or higher
Engine coolant temperature	75°C (167°F) or higher
Idle	OFF
Engine speed	Less than 3,200 rpm
A/F sensor status	Activated
Duration after fuel-cut: OFF	10 seconds or more

1NZ-FXE ENGINE CONTROL SYSTEM - SFI SYSTEM

ES–127

Engine load	10 to 70%	
Case 2: Low impedance		
Estimated sensor temperature	Lower than 750°C (1,382°F)	
Case 3: High impedance		
Estimated sensor temperature	450°C (842°F) or higher	
Intake air amount Case 4: Low voltage (Active A/F c	More than 0 g/sec.	
Case 4: Low voltage (Active A/F c Same as case 1	ontrol method)	
Case 4: Low voltage (Active A/F c	ontrol method)	
Case 4: Low voltage (Active A/F c Same as case 1 Case 5: High voltage (Active A/F c	ontrol method)	
Case 4: Low voltage (Active A/F c Same as case 1 Case 5: High voltage (Active A/F c Same as case 1	ontrol method)	

TYPICAL MALFUNCTION THRESHOLDS

Case 1: Output voltage (Active A/F control method)

Either of the following conditions 1 or 2 set	-
1. All of following conditions (a), (b) and (c) set	-
(a) Commanded air-fuel ratio	14.3 or less
(b) Sensor voltage	0.25 to 0.59 V
(c) OSC (Oxygen Storage Capacity of catalyst)	1.2 g or more
2. All of following conditions (d), (e) and (f) set	-
(d) Commanded air-fuel ratio	14.9 or more
(e) Rear HO2S voltage	0.25 to 0.59 V
(f) OSC (oxygen storage capacity of catalyst)	1.2 g or more

Case 2: Low impedance

Sensor impedance	Less than 5 Ω
------------------	----------------------

Case 3: High impedance

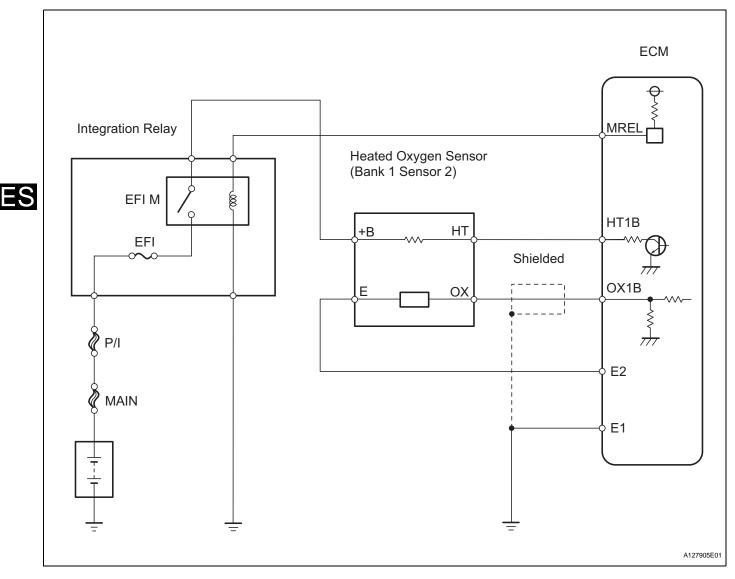
Sensor impedance	15,000 Ω or higher
------------------	---------------------------

Case 4: Low voltage (Active A/F control method)

All of following conditions (a), (b) and (c) set	-
(a) Commanded air-fuel ratio	14.3 or less
(b) Sensor voltage	Less than 0.25 V
(c) OSC (Oxygen Storage Capacity of catalyst)	1.2 g or more

Case 5: High voltage (Active A/F control method)

All of following conditions (d), (e) and (f) set	-
(d) Commanded air-fuel ratio	14.9 or more
(e) Sensor voltage	More than 0.59 V
(f) OSC (Oxygen Storage Capacity of catalyst)	1.2 g or more

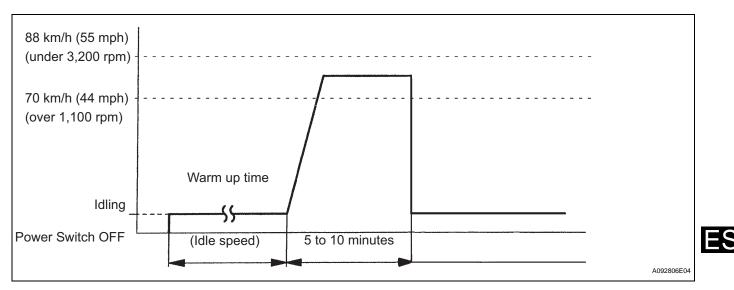

Case 6: High voltage

5

MONITOR RESULT

Refer to detailed information (see page ES-15).

WIRING DIAGRAM



CONFIRMATION DRIVING PATTERN

1. For DTC P0136 and P0137

HINT:

Performing this confirmation pattern will activate the DTC detection (P0136) of the ECM. This is very useful for verifying the completion of a repair.

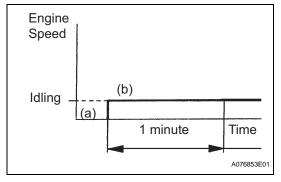
(a) Clear the DTCs (see page ES-29).

(b) Put the engine in inspection mode (see page ES-1).

(c) Start the engine and warm it up with all the accessory switches OFF.

(d) Deactivate the inspection mode and drive the vehicle at 70 to 112 km/h (44 to 70 mph) for 5 to 10 minutes.

(e) Read DTCs.


NOTICE:

- If the conditions in this test are not strictly followed, no malfunction will be detected. If you do
 not have the intelligent tester, turn the power switch OFF after performing steps (c) and (e), then
 perform step (d) again.
- Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.

2. For DTC P0138

HINT:

Performing this confirmation pattern will activate the DTC detection (P0138) of the ECM. This is very useful for verifying the completion of a repair.

(a) Clear the DTCs (see page ES-29).

(b) Put the engine in inspection mode (see page ES-1).

(c) Start the engine and let the engine idle for 1 minute.

(e) Read DTCs.

NOTICE:

If the conditions in this test are not strictly followed, no malfunction will be detected.

INSPECTION PROCEDURE

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1

CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P0136, P0137 AND/OR P0138)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

Display (DTC output)	Proceed to
P0136, P0137 and/or P0138	A
P0136, P0137 and/or P0138, and other DTCs	В

HINT:

If any other codes besides P0136, P0137 and/or P0138 are output, perform troubleshooting for those DTCs first.

GO TO RELEVANT DTC CHART

A

2

PERFORM ACTIVE TEST BY INTELLIGENT TESTER (A/F CONTROL)

HINT:

Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform A/F CONTROL operation using the intelligent tester.

HINT:

The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%.

- (1) Connect the intelligent tester to the DLC3.
- (2) Turn the power switch ON (IG).
- (3) Put the engine in inspection mode (see page ES-1).
- (4) Warm up the engine by running the engine at 2,500 rpm, depressing the accelerator pedal more than 60% for approximately 90 seconds.
- (5) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.
- (6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

Result:

A/F sensor reacts in accordance with increase and decrease of injection volume: +25% \rightarrow rich output: Less than 3.0 V

-12.5% \rightarrow lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with

increase and decrease of injection volume:

+25% \rightarrow rich output: More than 0.55 V

-12.5% \rightarrow lean output: Less than 0.4 V NOTICE:

The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.

Case	A/F Sensor (Sensor 1) Output Voltage		HO2 Sensor (Sensor 2) Output Voltage		Main Suspected Trouble Area
1	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[[
	Output Voltage More than 3.35 V Less than 3.0 V	ок	Output Voltage More than 0.55 V Less than 0.4 V	ок	
2	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠	 A/F sensor A/F sensor heater
	Output Voltage Almost no reaction	NG	Output Voltage More than 0.55 V Less than 0.4 V	ок	 A/F sensor heater A/F sensor circuit
3	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[[HO2 sensor HO2 sensor heater
	Output Voltage More than 3.35 V Less than 3.0 V	ок	Output Voltage Almost no reaction	NG	HO2 sensor circuit
4	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[[Fuel InjectorFuel pressureGas leakage from
	Output Voltage Almost no reaction	NG	Output Voltage Almost no reaction	NG	exhaust system (Air- fuel ratio extremely or lean rich)

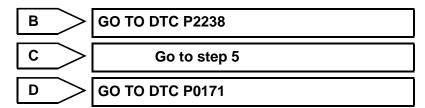
The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

To display the graph, enter ACTIVE TEST/ A/F CONTROL / USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button.

- A high A/F sensor voltage could be caused by a RICH airfuel mixture. Check the conditions that would cause the engine to run with the RICH air-fuel mixture.
- A low A/F sensor voltage could be caused by a LEAN airfuel mixture. Check the conditions that would cause the engine to run with the LEAN air-fuel mixture.

ES

Result


Α

3

GO

Α

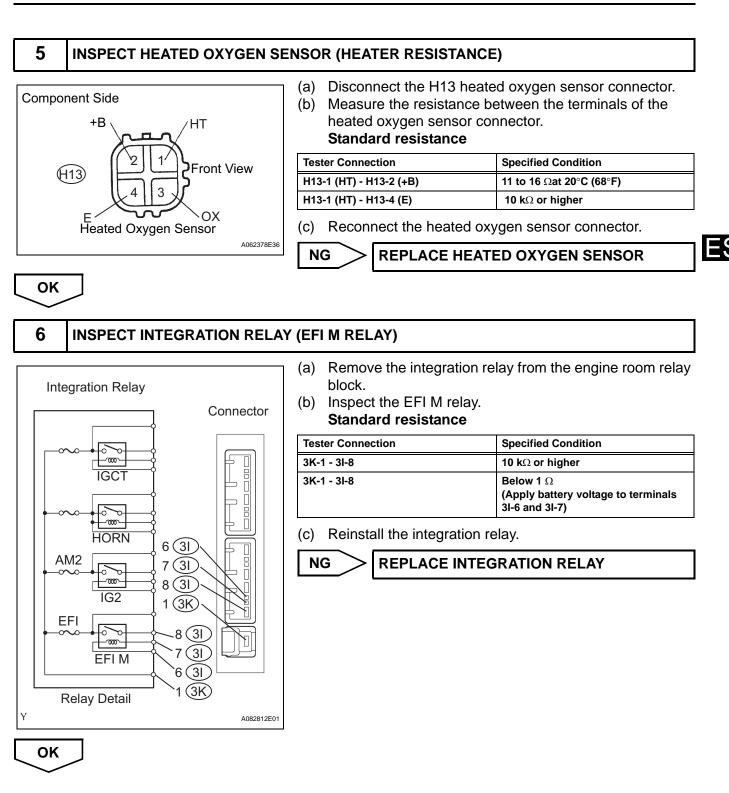
Output voltage of A/F sensor	Output voltage of heated oxygen sensor	Proceed to
ОК	ок	Α
NG	ок	В
ОК	NG	C
NG	NG	D

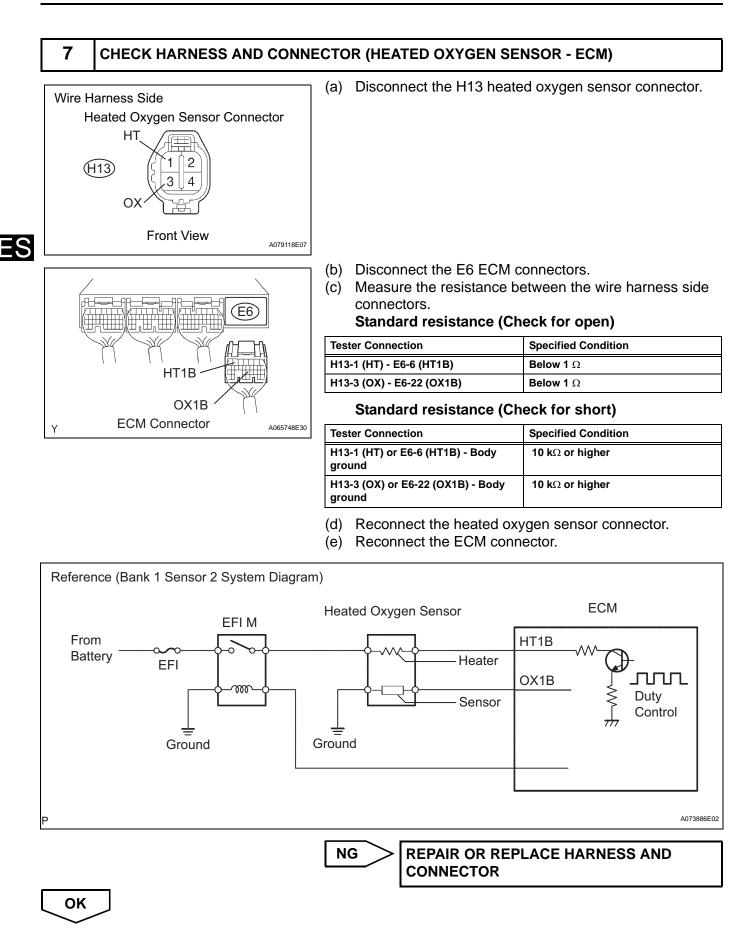
ES

PERFORM CONFIRMATION DRIVING PATTERN

HINT:

Clear all DTCs prior to performing the confirmation driving pattern.


4	READ OUTPUT DTCS (DTC P0136, P0137 AND/OR P0138 ARE OUTPUT AGAIN)
---	---


- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

Display (DTC output)	Proceed to
P0136, P0137 and/or P0138	A
P0136, P0137 and/or P0138, and other DTCs	В

B REPLACE HEATED OXYGEN SENSOR

CHECK FOR INTERMITTENT PROBLEMS

REPLACE HATED OXYGEN SENSOR

DTC	P0171	System Too Lean (Fuel Trim)
DTC	P0172	System Too Rich (Bank 1)

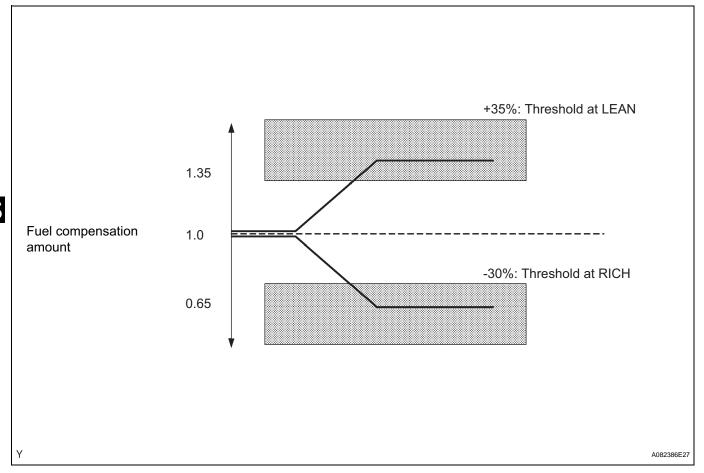
DESCRIPTION

The fuel trim is related to the feedback compensation value, not to the basic injection time. The fuel trim includes the short-term fuel trim and the long-term fuel trim.

The short-term fuel trim is the short-term fuel compensation used to maintain the air-fuel ratio at stoichiometric air-fuel ratio. The signal from the A/F sensor indicates whether the air-fuel ratio is RICH or LEAN compared to the stoichiometric air-fuel ratio. This variance triggers a reduction in the fuel volume if the air-fuel ratio is RICH, and an increase in the fuel volume if it is LEAN.

The long-term fuel trim is the overall fuel compensation carried out in long-term to compensate for a continual deviation of the short-term fuel trim from the central value, due to individual engine differences, wear overtime and changes in the operating environment.

If both the short-term fuel trim and the long-term fuel trim are LEAN or RICH beyond a certain value, it is detected as a malfunction and the MIL is illuminated and DTC is set.


DTC No.	DTC Detection Condition	Trouble Area
P0171	When air-fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on LEAN side (2 trip detection logic)	 Air induction system Injector blockage Mass air flow meter Engine coolant temperature sensor Fuel pressure Gas leakage in exhaust system Open or short in A/F sensor (bank 1, sensor 1) circuit A/F sensor (bank 1, sensor 1) A/F sensor heater (bank 1, sensor 1) EFI M relay PCV valve and hose PCV hose connection ECM
P0172	When air-fuel ratio feedback is stable after warming up engine, fuel trim is considerably in error on RICH side (2 trip detection logic)	 Injector leak, blockage Mass air flow meter Engine coolant temperature sensor Ignition system Fuel pressure Gas leakage in exhaust system Open or short in A/F sensor (bank 1, sensor 1) circuit A/F sensor (bank 1, sensor 1) A/F sensor heater EFI M relay ECM

HINT:

- When DTC P0171 is recorded, the actual air-fuel ratio is on the LEAN side. When DTC P0172 is recorded, the actual air-fuel ratio is on the RICH side.
- If the vehicle runs out of fuel, the air-fuel ratio is LEAN and DTC P0171 may be recorded. The MIL then illuminates.
- If the total of the short-term fuel trim value and long-term fuel trim value is between +33% and -30% (engine coolant temperature is more than 75°C (167°F)), the system is functioning normally.

ES

MONITOR DESCRIPTION

Under closed-loop fuel control, fuel injection amount that deviates from the ECM's estimated fuel amount will cause a change in the long-term fuel trim compensation value. This long-term fuel trim is adjusted when there are persistent deviations in the short-term fuel trim values. And the deviation from the simulated fuel injection amount by the ECM affects a smoothed fuel trim learning value. The smoothed fuel trim learning value is the combination of smoothed short-term fuel trim (fuel feedback compensation value) and smoothed long-term fuel trim (learning value of the air-fuel ratio). When the smoothed fuel trim learning value exceeds the DTC threshold, the ECM interprets this as a fault in the fuel system and sets a DTC.

Example:

The smoothed fuel trim leaning value is more than +33% or less than -30%.

The ECM interprets this as a failure in the fuel system.

DTC P0171 indicates that the air-fuel mixture is extremely LEAN, and P0172 indicates extremely RICH.

MONITOR STRATEGY

Related DTCs	P0171: Fuel system lean (bank 1) P0172: Fuel system rich (bank 1)
Required sensors/components	Main: A/F sensor Related: Engine coolant temperature sensor, mass air flow meter, crankshaft position sensor
Frequency of operation	Continuous
Duration	10 seconds
MIL operation	2 driving cycles
Sequence of operation	None

TYPICAL ENABLING CONDITIONS

The monitor will run whenever the following DTCs are not present	P0010 (VVT OCV) P0011 (VVT system 1 - Advance) P0012 (VVT system 1 - Retard) P0031, P0032 (A/F sensor heater - Sensor 1) P0100 - P0103 (MAF meter) P0115 - P0118 (ECT sensor) P0120 - P0223, P2135 (TP sensor) P0125 (Insufficient ECT for closed loop) P0335 (CKP sensor) P0340, P0341 (CMP sensor) P0351-P0354 (Igniter) P0500 (VSS)
Battery voltage	11 V or more
Fuel system: Closed-loop	More than 13 seconds
One of the following condition is met:	(a) or (b)
(a) Engine speed	Less than 1,100 rpm
(b) Intake air amount per revolution	0.22 g/rev or more
Warm-up condition enables air-fuel ratio learning control	Conditions are met

TYPICAL MALFUNCTION THRESHOLDS

Following condition is continued for 3 seconds	(a) or (b)
(a) Smoothed fuel trim learning value (lean)	33% or more
(b) Smoothed fuel trim learning value (rich)	-30% or less

WIRING DIAGRAM

Refer to DTC P2195 (see page ES-347).

INSPECTION PROCEDURE

HINT:

Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform the ACTIVE TEST A/F CONTROL operation.

The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%.

(1) Connect the intelligent tester to the DLC3.

(2) Turn the power switch ON (IG).

(3) Put the engine in inspection mode (see page ES-1).

(4) Warm up the engine by running the engine at 2,500 rpm, depressing the accelerator pedal more than 60% for approximately 90 seconds.

(5) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.

(6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

Result:

A/F sensor reacts in accordance with increase and decrease of injection volume:

+25% \rightarrow rich output: Less than 3.0 V

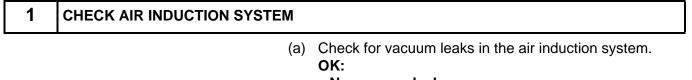
-12.5% \rightarrow lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume:

+25% \rightarrow rich output: More than 0.55 V

-12.5% \rightarrow lean output: Less than 0.4 V

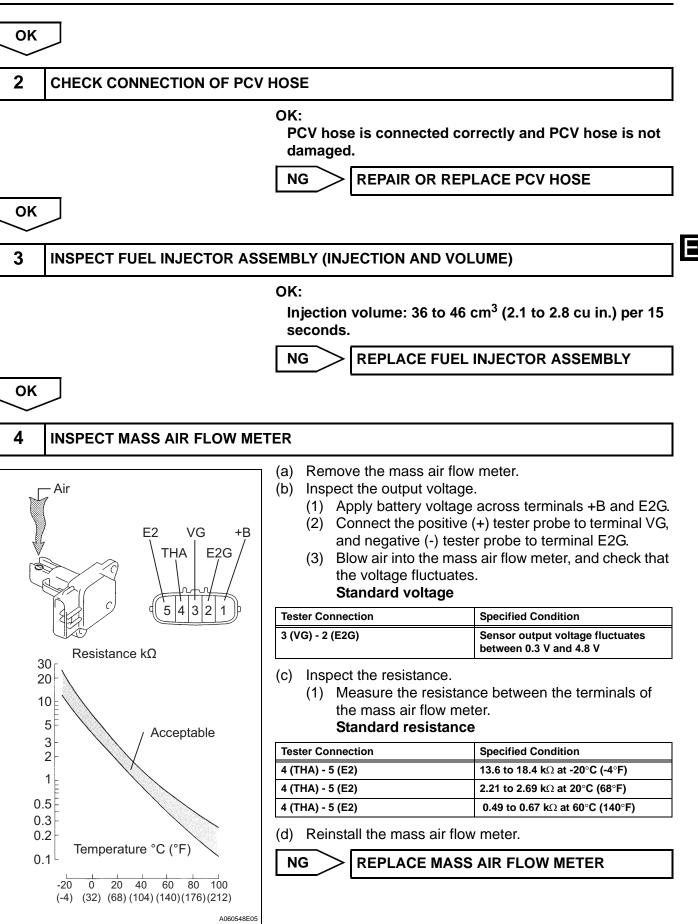
NOTICE:


The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.

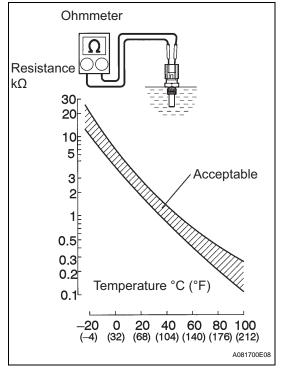
Case	e A/F Sensor (Se	nsor 1) Output Voltage	HO2 Sensor (Se	nsor 2) Output Voltage	Main Suspected Trouble Area
1	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[]	
	Output Voltage More than 3.35 V Less than 3.0 V	С	Output Voltage More than 0.55 V Less than 0.4 V	ок	-
2	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[]	 A/F sensor A/F sensor heater A/F sensor circuit
2	Output Voltage Almost no reaction	NG	Output Voltage More than 0.55 V Less than 0.4 V	ок	
3	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[[]	 HO2 sensor HO2 sensor heater HO2 sensor circuit
3	Output Voltage More than 3.35 V Less than 3.0 V	С	Output Voltage Almost no reaction	NG	
4	Injection Volume +25% -12.5%	♠	Injection Volume +25% -12.5%	♠[]	 Fuel Injector Fuel pressure Gas leakage from
4	Output Voltage Almost no reaction	NG	Output Voltage Almost no reaction	NG	exhaust system (Air- fuel ratio extremely or lean rich)

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

To display the graph, enter ACTIVE TEST/ A/F CONTROL/USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button. HINT:


- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- A high A/F sensor voltage could be caused by a RICH air-fuel mixture. Check the conditions that would cause the engine to run with the RICH air-fuel mixture.
- A low A/F sensor voltage could be caused by a LEAN air-fuel mixture. Check the conditions that would cause the engine to run with the LEAN air-fuel mixture.

No vacuum leakage.


REPAIR OR REPLACE AIR INDUCTION SYSTEM

5

INSPECT ENGINE COOLANT TEMPERATURE SENSOR (RESISTANCE)

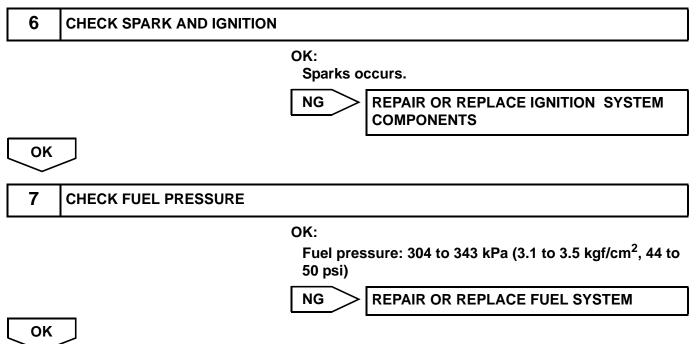
- (a) Remove the engine coolant temperature sensor.
- (b) Measure the resistance between the terminals of the engine coolant temperature sensor.

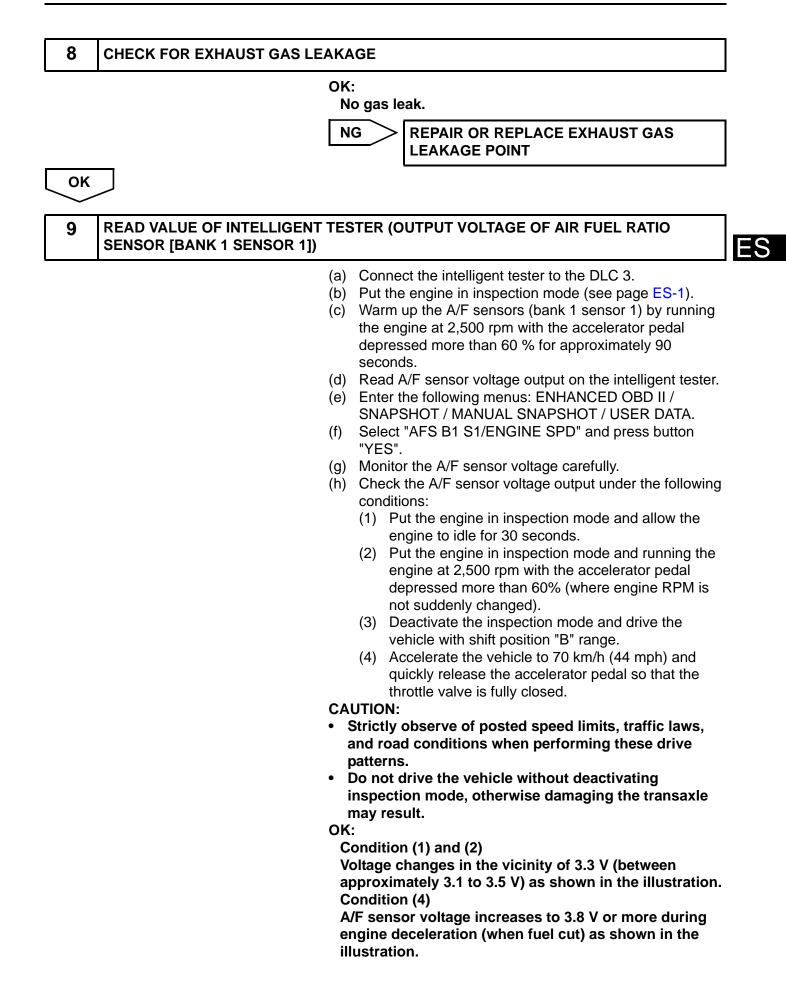
Standard resistance

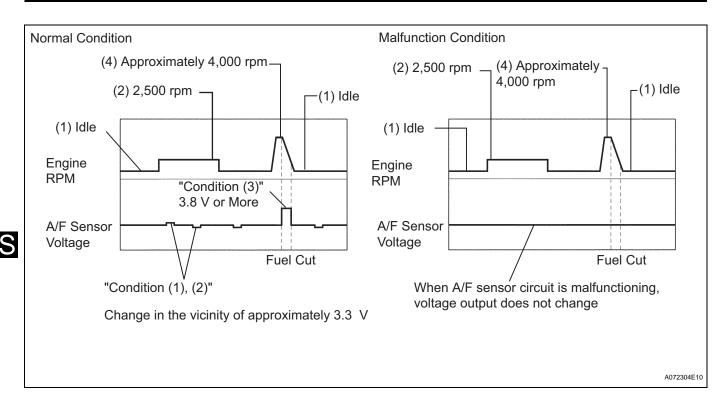
Tester Connection	Specified Condition	
1 - 2	2 to 3 kΩ at 20°C (68°F)	
1 - 2	0.2 to 0.4 kΩ at 80°C (176°F)	

NOTICE:

When checking the engine coolant temperature sensor in water, be careful not to allow water to contact the terminals. After checking, dry the sensor. HINT:

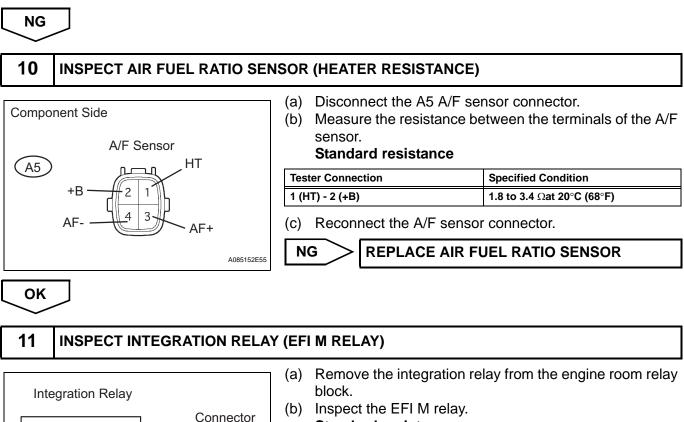

Alternate procedure: Connect an ohmmeter to the installed engine coolant temperature sensor and read the resistance. Use an infrared thermometer to measure the engine temperature in the immediate vicinity of the sensor. Compare these values to the resistance/temperature graph. Change the engine temperature (warm up or allow to cool down) and repeat the test.


(c) Reinstall the engine coolant temperature sensor.


NG

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

ОК



HINT:

- Whenever the output voltage of the A/F sensor remains at approximately 3.3 V (see diagram Malfunction Condition) under any condition as well as the above conditions, the A/ F sensor may have an open-circuit. (This will happen also when the A/F sensor heater has an open-circuit.)
- Whenever the output voltage of the A/F sensor remains at a certain value of approximately 3.8 V or more, or 2.8 V or less (see diagram Malfunction Condition) under any condition as well as the above conditions, the A/F sensor may have a short-circuit.
- The ECM will stop fuel injection (fuel cut) during engine deceleration. This will cause a LEAN condition and should result in a momentary increase in A/F sensor voltage output.
- The ECM must establish a closed throttle position learned value to perform fuel cut. If the battery terminal was reconnected, the vehicle must be driven over 10 mph to allow the ECM to learn the closed throttle position.
- When the vehicle is driven: The output voltage of the A/F sensor may be below 2.8 V during fuel enrichment. For the vehicle, this translates to a sudden increase in speed with the accelerator pedal fully depressed when trying to overtake another vehicle. The A/ F sensor is functioning normally.
- The A/F sensor is a current output element, and therefore the current is converted into voltage inside the ECM. If measuring voltage at connectors of A/F sensor or ECM, you will observe a constant voltage.

Standard resistance

Tester Connection	Specified Condition
3K-1 - 3I-8	10 k Ω or higher
3K-1 - 3I-8	Below 1 Ω (Apply battery voltage to terminals 3I-6 and 3I-7)

(c) Reinstall the integration relay.

ОК

~~~ -‱-

IGCT

-0000-

HORN

IG2

~~

EFI M

**Relay Detail** 

AM2

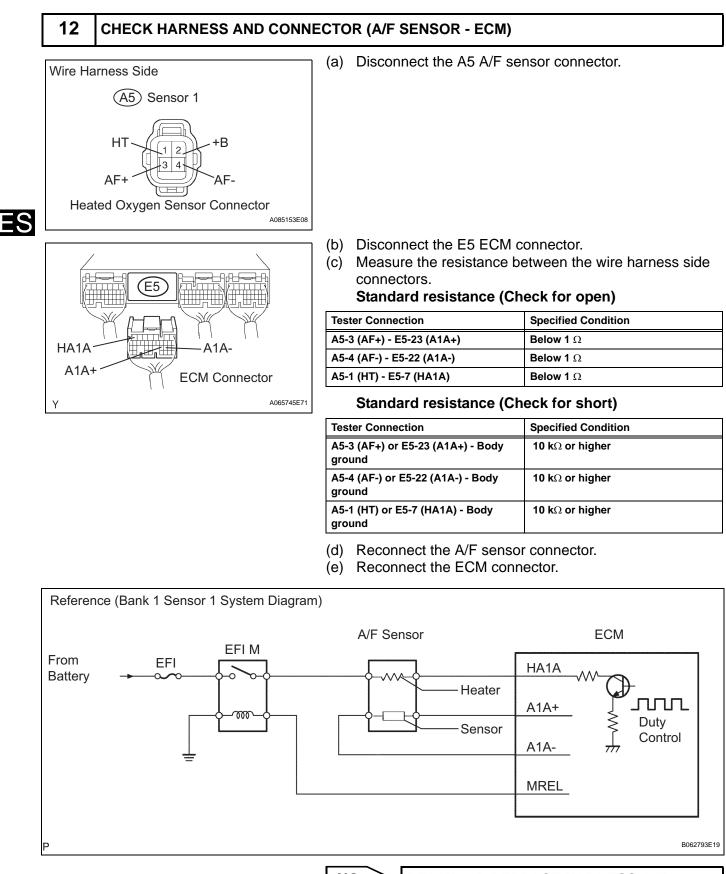
EFI

6 (3I)

7 (31)

8 (31)

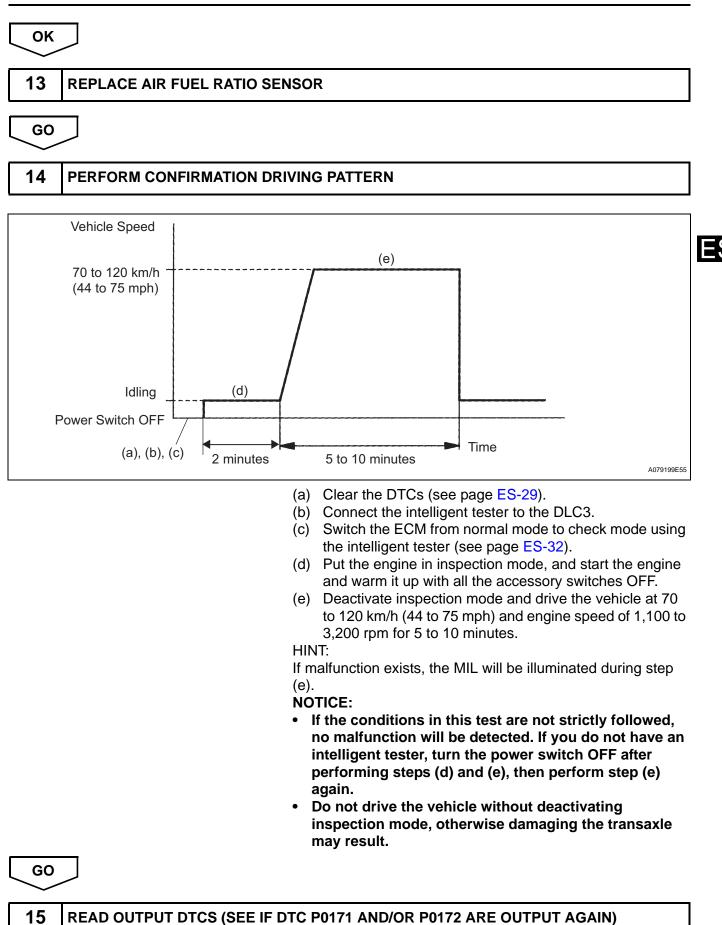
1 (3K)


.8 (31

7 (3I)

6 (31) 1 (3K) A082812E01

ES-143


ES



NG

REPAIR OR REPLACE HARNESS AND CONNECTOR

ES-145



Α

YES

- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs using the intelligent tester. Result

| Display (DTC Output) | Proceed to |
|----------------------|------------|
| No output            | A          |
| P0171 and/or P0172   | В          |



#### **REPLACE ECM AND PERFORM CONFIRMATION DRIVING PATTERN**

16 CONFIRM IF VEHICLE HAS RUN OUT OF FUEL IN PAST



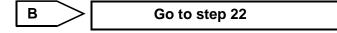
**CHECK FOR INTERMITTENT PROBLEMS** 

DTCS ARE CAUSED BY RUNNING OUT OF FUEL (DTCS P0171 AND/OR P0172)

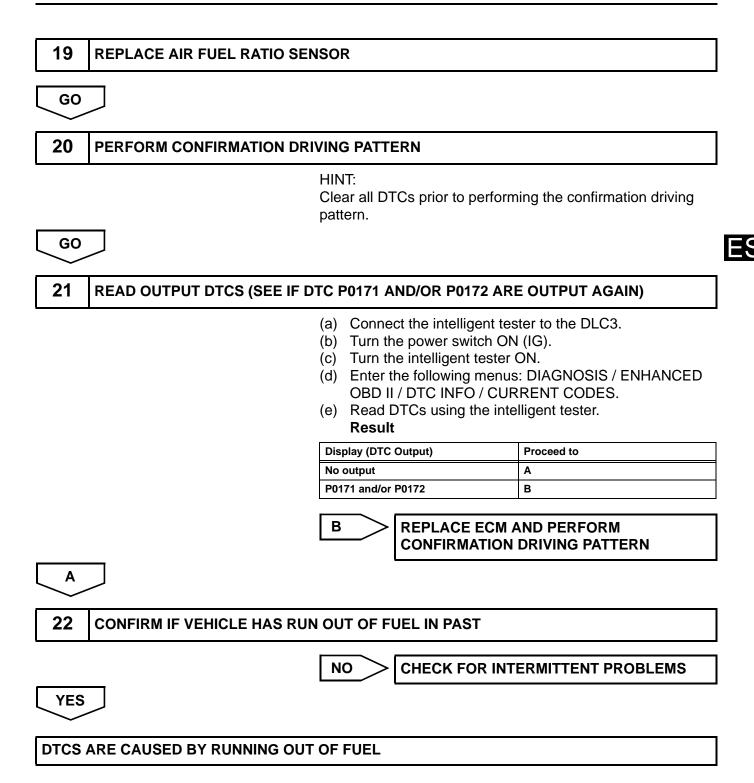
#### 17 PERFORM CONFIRMATION DRIVING PATTERN

HINT:

Clear all DTCs prior to performing the confirmation driving pattern.


GO

#### 18 READ OUTPUT DTCS (SEE IF DTC P0171 AND/OR P0172 ARE OUTPUT AGAIN)


(a) Connect the intelligent tester to the DLC3.

- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs using the intelligent tester. Result

| Display (DTC Output) | Proceed to |
|----------------------|------------|
| No output            | Α          |
| P0171 and/or P0172   | В          |





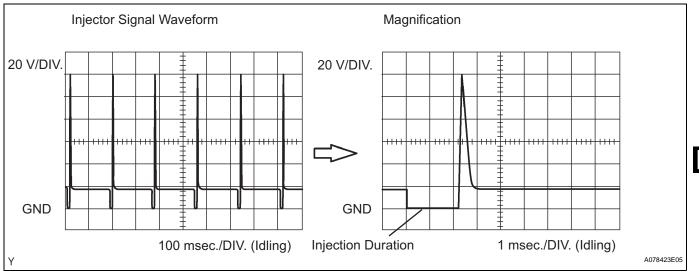


| DTC | P0300 | Random / Multiple Cylinder Misfire Detected |
|-----|-------|---------------------------------------------|
| DTC | P0301 | Cylinder 1 Misfire Detected                 |
| DTC | P0302 | Cylinder 2 Misfire Detected                 |
| DTC | P0303 | Cylinder 3 Misfire Detected                 |
| DTC | P0304 | Cylinder 4 Misfire Detected                 |

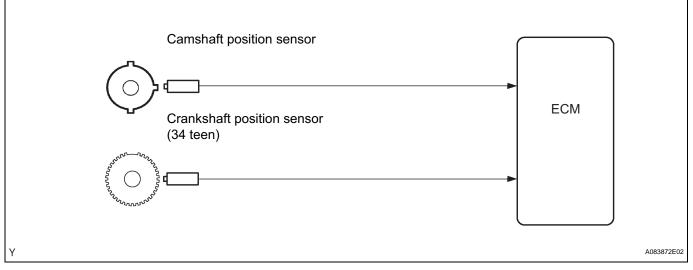
### **ES** DESCRIPTION

When a misfire occurs in the engine, hydrocarbons (HC) enter the exhaust gas in high concentrations. If this HC concentration is high enough, there could be an increase in exhaust emissions levels. High concentrations of HC can also cause to temperature of the catalyst to increase, possibly damaging the catalyst. To prevent this increase in emissions and limit the possibility of thermal damage, the ECM monitors the misfire rate. When the temperature of the catalyst reaches a point of thermal degradation, the ECM will blink the MIL. For monitoring misfire, the ECM uses both the camshaft position sensor and the crankshaft position sensor. The camshaft position sensor is used to identify misfiring cylinders and the crankshaft position sensor is used to measure variations in the crankshaft rotation speed. The misfire counter increments when crankshaft rotation speed variations exceed threshold values. If the misfiring rate exceeds the threshold value and could cause emissions deterioration, the ECM illuminates the MIL.

| DTC No.                          | DTC Detection Condition                                                                                                                                                                                                                                                                                                           | Trouble Area                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0300                            | Misfiring of random cylinders is detected<br>during any particular 200 or 1,000 revolutions<br>1 trip detection logic: MIL blinks<br>2 trip detection logic: MIL illuminates                                                                                                                                                      | <ul> <li>Open or short in engine wire harness</li> <li>Connector connection</li> <li>Vacuum hose connection</li> <li>Ignition system</li> <li>Injector</li> <li>Fuel pressure</li> <li>Mass air flow meter</li> <li>Engine coolant temperature sensor</li> <li>Compression pressure</li> <li>Valve clearance</li> <li>Valve timing</li> <li>PCV hose connection</li> <li>PCV hose</li> <li>ECM</li> </ul> |
| P0301<br>P0302<br>P0303<br>P0304 | <ul> <li>For any particular 200 revolutions of<br/>engine, misfiring is detected which can<br/>cause catalyst overheating (This causes<br/>MIL to blink)</li> <li>For any particular 1,000 revolutions of<br/>engine, misfiring is detected which<br/>causes a deterioration in emissions (2 trip<br/>detection logic)</li> </ul> | <ul> <li>Open or short in engine wire harness</li> <li>Connector connection</li> <li>Vacuum hose connection</li> <li>Ignition system</li> <li>Injector</li> <li>Fuel pressure</li> <li>Mass air flow meter</li> <li>Engine coolant temperature sensor</li> <li>Compression pressure</li> <li>Valve clearance</li> <li>Valve timing</li> <li>PCV hose connection</li> <li>PCV hose</li> <li>ECM</li> </ul> |


#### NOTICE:

When several codes for a misfiring cylinder are recorded repeatedly but no random misfire code is recorded, it indicates that the misfires have been detected and recorded at different times. Reference: Inspection using oscilloscope


With the engine idling, check the waveform between terminals #10 to #40 and E01 of the ECM connectors.

#### HINT:

The correct waveform is as shown.



### **MONITOR DESCRIPTION**



The ECM illuminates the MIL (2 trip detection logic) if:

• The percent misfire exceeds the specified limit per 1,000 engine revolutions. One occurrence of excessive misfire during engine start will set the MIL. After engine start, four occurrences of excessive misfire set the MIL.

The ECM blinks the MIL (immediately) if:

- The threshold for percent of misfire causing catalyst damage is reached 1 time in 200 engine revolutions at a high rpm, and 3 times in 200 engine revolutions at a normal rpm.
- The threshold for percent of misfire causing catalyst damage is reached.

### **MONITOR STRATEGY**

| Related DTCs | P0300: Random/Multiple cylinder misfire detected<br>P0301: Cylinder 1 misfire detected |
|--------------|----------------------------------------------------------------------------------------|
|              | P0302: Cylinder 2 misfire detected                                                     |
|              | P0303: Cylinder 3 misfire detected                                                     |
|              | P0304: Cylinder 4 misfire detected                                                     |

ES

| Required sensors/components | Main:<br>Camshaft position sensor, crankshaft position sensor<br>Related:<br>Engine coolant temperature sensor, intake air temperature sensor,<br>throttle position sensor |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency of operation      | Continuous                                                                                                                                                                 |
| Duration                    | Every 1,000 revolutions:<br>Every 200 revolutions:                                                                                                                         |
| MIL operation               | 2 driving cycles: MIL ON<br>Immediately: MIL blinking (catalyst deteriorating)                                                                                             |
| Sequence of operation       | None                                                                                                                                                                       |

### **TYPICAL ENABLING CONDITIONS**

| Monitor runs whenever following DTCs not present | D0100 D0102 (MAE motor)                  |
|--------------------------------------------------|------------------------------------------|
| Monitor runs whenever following DTCs not present | P0100 - P0103 (MAF meter)                |
|                                                  | P0110 - P0113 (IAT sensor)               |
|                                                  | P0115 - P0118 (ECT sensor)               |
|                                                  | P0120 - P0223, P2135 (TP sensor)         |
|                                                  | P0125 (Insufficient ECT for closed loop) |
|                                                  | P0325 - P0328 (knock sensor)             |
|                                                  | P0335 (CKP sensor)                       |
|                                                  | P0340 (CMP sensor)                       |
|                                                  | P0500 (VSS)                              |
| Battery voltage                                  | 8 V or more                              |
| Throttle position learning                       | Completed                                |
| VVT system                                       | Not operated by scan tool                |
| Engine RPM                                       | 850 to 5,300 rpm                         |
| Both of following conditions 1 and 2 met         | -                                        |
| 1. Engine coolant temperature (ECT)              | -10°C (14°F) or more                     |
| 2. Either of following conditions (a) or (b) met | -                                        |
| (a) ECT at engine start                          | More than -7°C (19°F)                    |
| (b) ECT                                          | More than 20°C (68°F)                    |
| Fuel cut                                         | OFF                                      |

#### Monitor period of emission-related-misfire:

| First 1,000 revolution after engine start, or check mode | Crankshaft 1,000 revolutions     |
|----------------------------------------------------------|----------------------------------|
| Except above                                             | Crankshaft 1,000 revolutions x 4 |

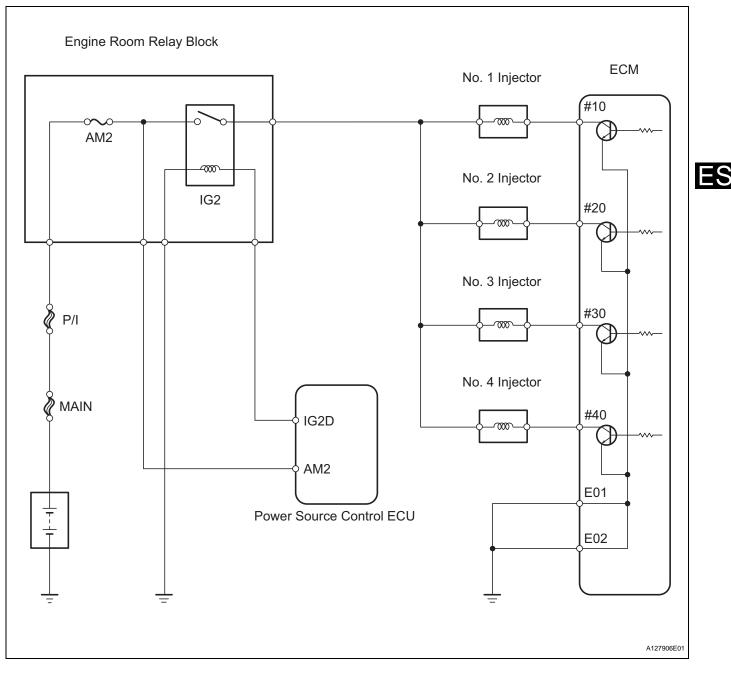
#### Monitor period of catalyst-damaged-misfire (MIL blinks):

| All of following conditions 1, 2 and 3 met | Crankshaft 200 revolutions x 3 |
|--------------------------------------------|--------------------------------|
| 1. Driving cycles                          | 1st                            |
| 2. Check mode                              | OFF                            |
| 3. Engine RPM                              | Less than 3,400 rpm            |
| Except above                               | Crankshaft 200 revolutions     |

### **TYPICAL MALFUNCTION THRESHOLDS**

### Emission - related - misfire

| Misfire rate                             | 2 % or more                                         |
|------------------------------------------|-----------------------------------------------------|
| Catalyst - damage - misfire (MIL blinks) |                                                     |
| Number of misfire per 200 revolution     | 108 or more (varies with intake air amount and RPM) |


### **MONITOR RESULT**

Refer to detailed information (see page ES-15).

### WIRING DIAGRAM

HINT:

Refer to DTC P0351 (see page ES-171) for the wiring diagram of the ignition system.



### **CONFIRMATION DRIVING PATTERN**

(a) Connect the intelligent tester to the DLC3.

- (b) Record DTCs and the freeze frame data.
- (c) Switch the ECM from normal mode to check mode using the intelligent tester (see page ES-32).

(d) Read the value on the misfire counter for each cylinder when idling. If the value is displayed on the misfire counter, skip the following procedure of confirmation driving.

(e) Drive the vehicle several times with an engine speed (ENGINE SPD), engine load (CALC LOAD) and other data stored in the freeze frame data.

If you have no intelligent tester, turn the power switch OFF after the symptom is simulated once. Then repeat the simulation process again.

#### NOTICE:

In order to memorize the misfire DTCs, it is necessary to drive with MISFIRE RPM and MISFIRE LOAD in the DATA LIST for the period of time in the chart below. Take care not to turn the power switch OFF. Turning the power switch OFF switches the diagnosis system from check mode to normal mode and all DTCs, freeze frame data and other data are erased.

| Engine Speed             | Time                         |
|--------------------------|------------------------------|
| Idling (Inspection mode) | 3 minutes 30 seconds or more |
| 1,000 rpm                | 3 minutes or more            |
| 2,000 rpm                | 1 minute 30 seconds or more  |
| 3,000 rpm                | 1 minute or more             |

(f) Check if there is a misfire, DTC and the freeze frame data. Record DTCs, freeze frame data and misfire counter data.

(g) Turn the power switch OFF and wait at least for 5 seconds.

### **INSPECTION PROCEDURE**

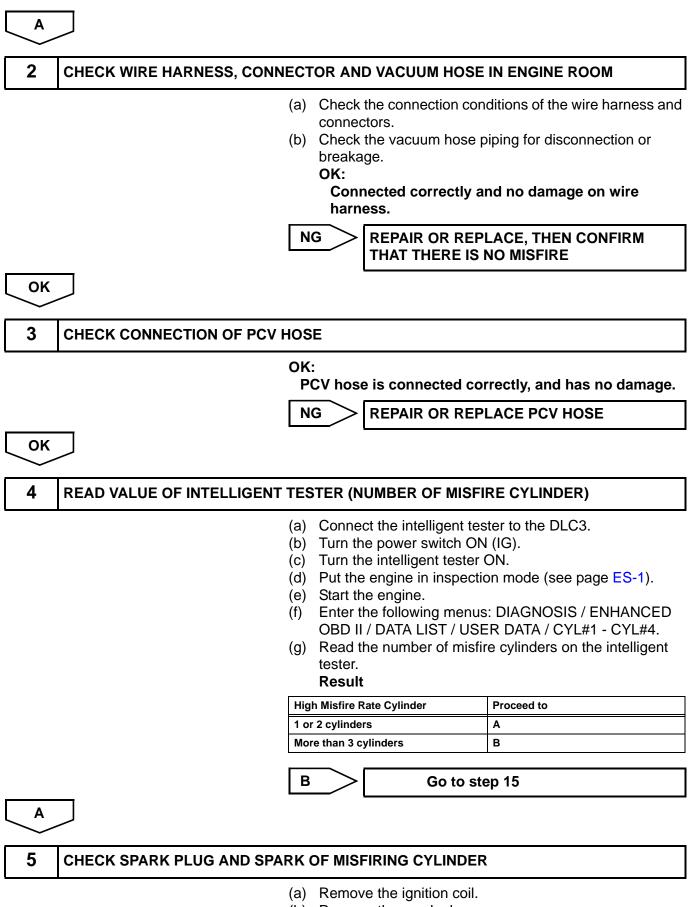
HINT:

- If DTCs besides misfire DTCs are memorized simultaneously, troubleshoot the non-misfire DTCs first.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- If the misfire does not occur when the vehicle is brought to the workshop, the misfire can be confirmed by reproducing the condition of the freeze frame data. Also, after finishing repairs, confirm that there is no misfire (see confirmation driving pattern).
- When either of SHORT FT #1 and LONG FT #1 in the freeze frame data is over the range of +-20%, there is a possibility that the air-fuel ratio is inclining either to RICH (-20% or less) or LEAN (+20% or more).
- When COOLANT TEMP in the freeze frame data is less than 80°C (176°F), there is a possibility of misfire only during engine warm-up.
- If the misfire cannot be reproduced, the reason may be because of the driving the vehicle with lack of fuel, use of improper fuel, a stain on the ignition plug, etc.
- Be sure to check the value on the misfire counter after repairs.

### 1 CHECK OTHER DTC OUTPUT (IN ADDITION TO MISFIRE DTCS)

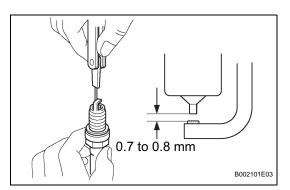
- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs.

#### Result


| Display (DTC output)                                    | Proceed to |
|---------------------------------------------------------|------------|
| P0300, P0301, P0302, P0303 and/or P0304                 | Α          |
| P0300, P0301, P0302, P0303 and/or P0304, and other DTCs | В          |

#### HINT:

If any other codes besides P0300, P0301, P0302, P0303 or P0304 are output, perform troubleshooting for those DTCs first.




GO TO RELEVANT DTC CHART



(b) Remove the spark plug.

 $\mathsf{ES}$ 



(c) Check the spark plug type. Recommended spark plug:

| Recentionada opark plugi |         |
|--------------------------|---------|
| DENSO made               | SK16R11 |
|                          |         |

(d) Check the spark plug electrode gap.
 Electrode gap:
 0.7 to 0.8 mm (0.028 to 0.032 in.)

Maximum electrode gap:

1.16 mm (0.046 in.)

NOTICE:

If adjusting the gap of a new spark plug, bend only the base of the ground electrode. Do not touch the tip. Never attempt to adjust the gap on the used plug.

- (e) Check the electrode for carbon deposits.
- (f) Perform a spark test.

#### CAUTION:

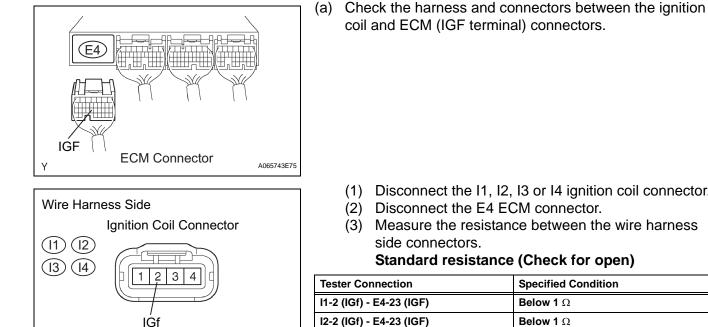
Absolutely disconnect the each injector connector. NOTICE:

#### Do not crank the engine for more than 2 seconds.

- (1) Install the spark plug to the ignition coil, and connect the ignition coil connector.
- (2) Disconnect the injector connector.
- (3) Ground the spark plug.
- (4) Check if spark occurs while the engine is being cranked.

OK:

#### Spark jumps across electrode gap.


- (g) Reinstall the spark plug.
- (h) Reinstall the ignition coil.



Go to step 8

NG 6 CHANGE NORMAL SPARK PLUG AND CHECK SPARK OF MISFIRING CYLINDER (a) Change to the normal spark plug. (b) Perform a spark test. CAUTION: Absolutely disconnect each injector connector. NOTICE: Do not crank the engine for more than 2 seconds. (1) Install the spark plug to the ignition coil, and connect the ignition coil connector. (2) Disconnect the injector connector. (3) Ground the spark plug. (4) Check if spark occurs while the engine is being cranked. OK: Spark jumps across electrode gap. OK **REPLACE SPARK PLUG** NG

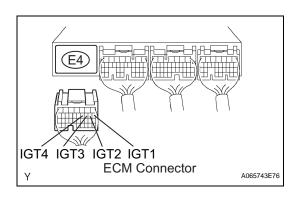
CHECK HARNESS AND CONNECTOR OF MISFIRING CYLINDER (IGNITION COIL - ECM)



A054393E49

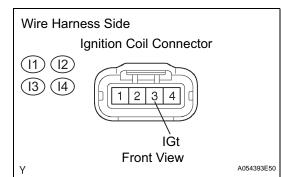
## coil and ECM (IGF terminal) connectors.

- (1) Disconnect the I1, I2, I3 or I4 ignition coil connector.
- (2) Disconnect the E4 ECM connector.
- (3) Measure the resistance between the wire harness


#### Standard resistance (Check for open)

| Tester Connection        | Specified Condition |
|--------------------------|---------------------|
| l1-2 (IGf) - E4-23 (IGF) | Below 1 Ω           |
| I2-2 (IGf) - E4-23 (IGF) | Below 1 $\Omega$    |
| I3-2 (IGf) - E4-23 (IGF) | Below 1 $\Omega$    |
| l4-2 (IGf) - E4-23 (IGF) | Below 1 Ω           |

#### Standard resistance (Check for short)


| Tester Connection                          | Specified Condition     |
|--------------------------------------------|-------------------------|
| I1-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |
| I2-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |
| I3-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |
| I4-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |

- (4) Reconnect the ignition coil connector.
- (5) Reconnect the ECM connector.
- (b) Check the harness and connectors between the ignition coil and ECM (IGT terminal) connectors.



Front View

7



- (1) Disconnect the I1, I2, I3 or I4 ignition coil connector.
- (2) Disconnect the E4 ECM connector.
- (3) Measure the resistance between the wire harness side connectors.

#### Standard resistance (Check for open)

| Tester Connection         | Specified Condition |
|---------------------------|---------------------|
| I1-3 (IGt) - E4-8 (IGT1)  | Below 1 Ω           |
| I2-3 (IGt) - E4-9 (IGT2)  | Below 1 $\Omega$    |
| I3-3 (IGt) - E4-10 (IGT3) | Below 1 $\Omega$    |
| I4-3 (IGt) - E4-11 (IGT4) | Below 1 Ω           |

#### Standard resistance (Check for short)

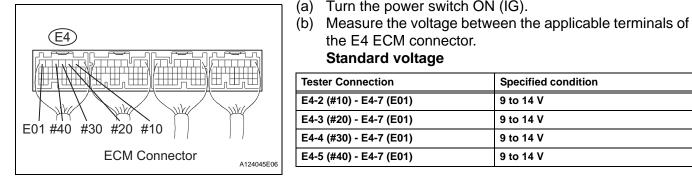
| Tester Connection                           | Specified Condition     |
|---------------------------------------------|-------------------------|
| I1-3 (IGt) or E4-8 (IGT1) - Body<br>ground  | 10 k $\Omega$ or higher |
| I2-3 (IGt) or E4-9 (IGT2) - Body<br>ground  | 10 k $\Omega$ or higher |
| I3-3 (IGt) or E4-10 (IGT3) - Body<br>ground | 10 k $\Omega$ or higher |
| I4-3 (IGt) or E4-11 (IGT4) - Body<br>ground | 10 k $\Omega$ or higher |

(4) Reconnect the ignition coil connector.

(5) Reconnect the ECM connector.

Turn the power switch ON (IG).

the E4 ECM connector. Standard voltage


**PLACE IGNITION COIL (THEN CONFIRM** HAT THERE IS NO MISFIRE)

NG

### REPAIR OR REPLACE HARNESS AND CONNECTOR

8

CHECK ECM TERMINAL OF MISFIRING CYLINDER (#10. #20. #30 OR #40 VOLTAGE)

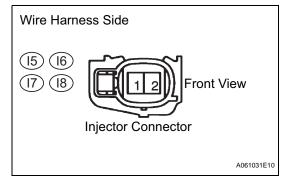


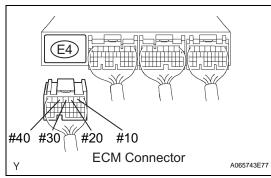
| Tester Connection       | Specified condition |
|-------------------------|---------------------|
| E4-2 (#10) - E4-7 (E01) | 9 to 14 V           |
| E4-3 (#20) - E4-7 (E01) | 9 to 14 V           |
| E4-4 (#30) - E4-7 (E01) | 9 to 14 V           |
| E4-5 (#40) - E4-7 (E01) | 9 to 14 V           |

Go to step 11

NG

9 **INSPECT FUEL INJECTOR RESISTANCE OF MISFIRING CYLINDER** 


NG


OK

**REPLACE FUEL INJECTOR ASSEMBLY** 

### ОК

# **10** CHECK HARNESS AND CONNECTOR OF MISFIRING CYLINDER (INJECTOR - ECM, INJECTOR - IG2 RELAY)



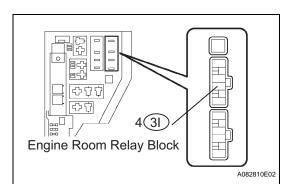


(a) Check the harness and connectors between the injector connector and ECM connector.

- (1) Disconnect the I5, I6, I7 or I8 injector connector.
- (2) Disconnect the E4 ECM connector.
- (3) Measure the resistance between the wire harness side connectors.

#### Standard resistance (Check for open)

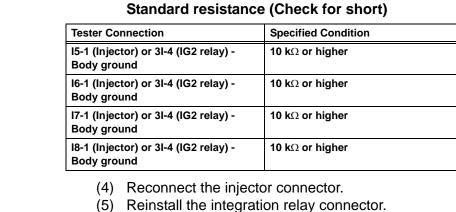
| Tester Connection            | Specified Condition |
|------------------------------|---------------------|
| I5-2 (Injector) - E4-2 (#10) | Below 1 Ω           |
| l6-2 (Injector) - E4-3 (#20) | Below 1 Ω           |
| I7-2 (Injector) - E4-4 (#30) | Below 1 Ω           |
| 18-2 (Injector) - E4-5 (#40) | Below 1 $\Omega$    |


#### Standard resistance (Check for short)

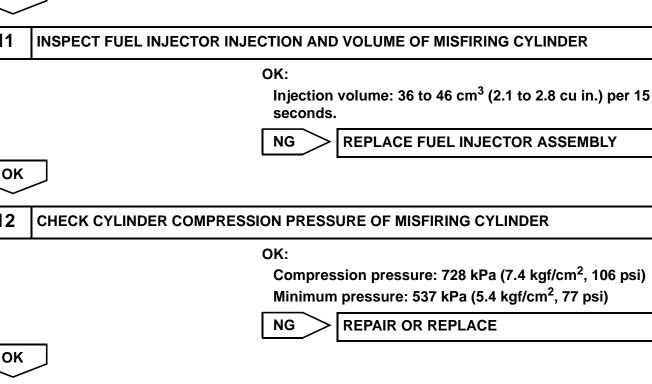
| Tester Connection                              | Specified Condition     |
|------------------------------------------------|-------------------------|
| I5-2 (Injector) or E4-2 (#10) - Body<br>ground | 10 kΩ or higher         |
| I6-2 (Injector) or E4-3 (#20) - Body<br>ground | 10 k $\Omega$ or higher |
| I7-2 (Injector) or E4-4 (#30) - Body<br>ground | 10 k $\Omega$ or higher |
| I8-2 (Injector) or E4-5 (#40) - Body<br>ground | 10 k $\Omega$ or higher |

- (4) Reconnect the injector connector.
- (5) Reconnect the ECM connector.
- (b) Check the harness and connectors between the injector connector and IG2 relay.
  - (1) Disconnect the I5, I6, I7 or I8 injector connector.
  - (2) Remove the integration relay from the engine room relay block.
  - (3) Measure the resistance between the wire harness side connectors.

#### Standard resistance (Check for open)


| Tester Connection                  | Specified Condition |
|------------------------------------|---------------------|
| I5-1 (Injector) - 3I-4 (IG2 relay) | Below 1 $\Omega$    |
| I6-1 (Injector) - 3I-4 (IG2 relay) | Below 1 $\Omega$    |
| I7-1 (Injector) - 3I-4 (IG2 relay) | Below 1 $\Omega$    |
| 18-1 (Injector) - 31-4 (IG2 relay) | Below 1 Ω           |




OK

11

12



#### **REPAIR OR REPLACE HARNESS AND** NG CONNECTOR

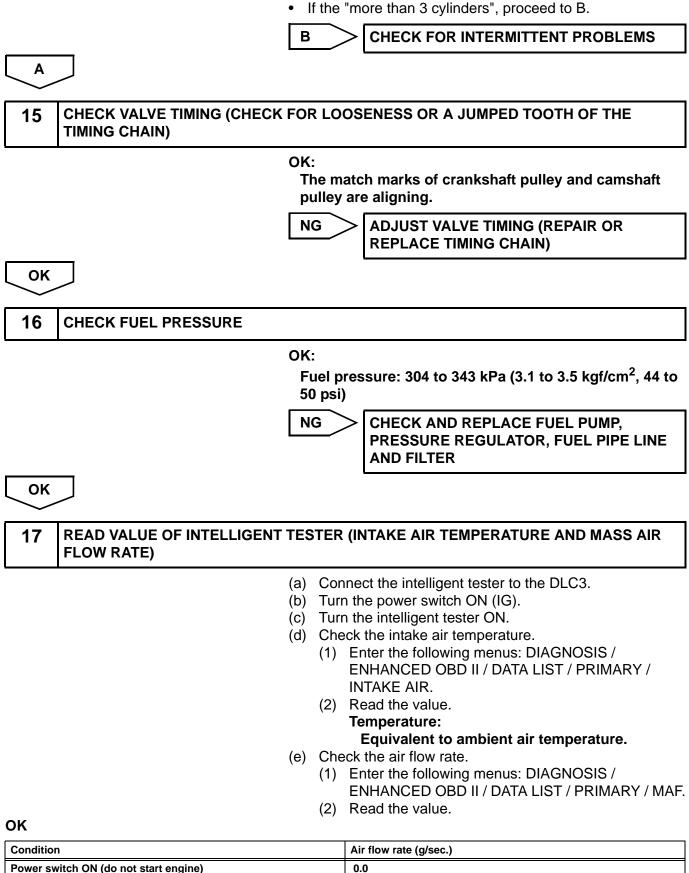


13 CHECK VALVE CLEARANCE OF MISFIRING CYLINDER

#### OK:

Valve clearance (cold): Intake: 0.17 to 0.23 mm (0.007 to 0.009 in.) Exhaust: 0.27 to 0.33 mm (0.011 to 0.013 in.)

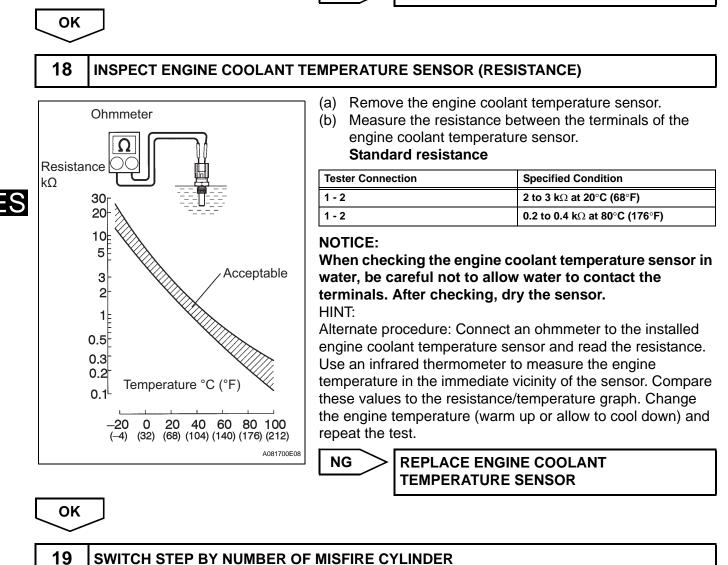



OK

| 14 | SWITCH STEP BY NUMBER OF MISFIRE CYLINDER |
|----|-------------------------------------------|
|----|-------------------------------------------|

HINT:

If the "1 or 2 cylinders", proceed to A.


ES



| Power switch ON (do not start engine)                             | 0.0                      |
|-------------------------------------------------------------------|--------------------------|
| Idling (Inspection mode)                                          | 3.2 to 4.7               |
| Running without load (Inspection mode, engine speed of 2,500 rpm) | 13.1 to 18.9             |
| During vehicle running (Vehicle speed of more than 38 mph)        | Air flow rate fluctuates |

NG >

**REPLACE MASS AIR FLOW METER** 



### HINT:

- If the "1 or 2 cylinders", proceed to A.
- If the "more than 3 cylinders", proceed to B.



CHECK FOR INTERMITTENT PROBLEMS

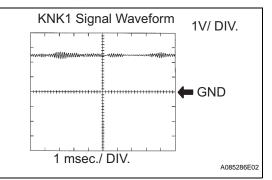
Α

| DTC | P0325 | Knock Sensor 1 Circuit                                      |
|-----|-------|-------------------------------------------------------------|
| DTC | P0327 | Knock Sensor 1 Circuit Low Input (Bank 1 or Single Sensor)  |
| DTC | P0328 | Knock Sensor 1 Circuit High Input (Bank 1 or Single Sensor) |

### DESCRIPTION

A flat type knock sensor (non-resonant type) has the structure that can detect vibration in a wider band of the frequency from about 6 kHz to 15 kHz and has the following features.

Knock sensors are fitted on the cylinder block to detect engine knocking.


The knock sensor contains a piezoelectric element which generates voltage when it becomes deformed. The generation of the voltage occurs when the cylinder block vibrates due to the knocking. If the engine knocking occurs, in order to suppress it, the ignition timing is retarded.

| DTC No. | DTC Detection Condition                               | Trouble Area                                                                                                                  |
|---------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| P0325   | Knock sensor signal level remains at low for 1 second | <ul> <li>Open or short in knock sensor circuit</li> <li>Knock sensor (under-torqued or<br/>looseness)</li> <li>ECM</li> </ul> |
| P0327   | Output voltage of the knock sensor is less than 0.5 V | <ul><li>Short in knock sensor circuit</li><li>Knock sensor</li><li>ECM</li></ul>                                              |
| P0328   | Output voltage of the knock sensor is more than 4.5 V | <ul><li>Open in knock sensor circuit</li><li>Knock sensor</li><li>ECM</li></ul>                                               |

#### HINT:

If the ECM detects the DTC P0325,P0327 and P0328, it enters fail-safe mode in which the corrective retarded angle value is set to its maximum value.

Reference: Inspection by using an oscilloscope.



(1) After warming up, run the engine at 2,500 rpm, check the waveform between terminals KNK1 and EKNK of the ECM connector.

### MONITOR DESCRIPTION

The knock sensor, located on the cylinder block, detects spark knocks. When the spark knocks occur, the sensor picks-up vibrates in a specific frequency range. When the ECM detects the voltage in this frequency range, it retards the ignition timing to suppress the spark knock.

The ECM also senses background engine noise with the knock sensor and uses this noise to check for faults in the sensor. If the knock sensor signal level is too low for more than 10 seconds, and if the knock sensor output voltage is out of the normal range, the ECM interprets this as a fault in the knock sensor and sets a DTC.

### **MONITOR STRATEGY**

| Related DTCs                       | P0325: Knock sensor (bank 1) range check or rationality<br>P0327: Knock sensor (bank 1) range check (low voltage)<br>P0328: Knock sensor (bank 1) range check (high voltage) |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Required sensors/components (main) | Main:<br>Knock sensor<br>Related: Crankshaft position sensor,<br>Camshaft position sensor, Engine coolant temperature sensor, Mass<br>air flow meter                         |  |
| Frequency of operation             | Continuous                                                                                                                                                                   |  |
| Duration                           | 1 second                                                                                                                                                                     |  |
| MIL operation                      | Immediately                                                                                                                                                                  |  |
| Sequence of operation              | None                                                                                                                                                                         |  |

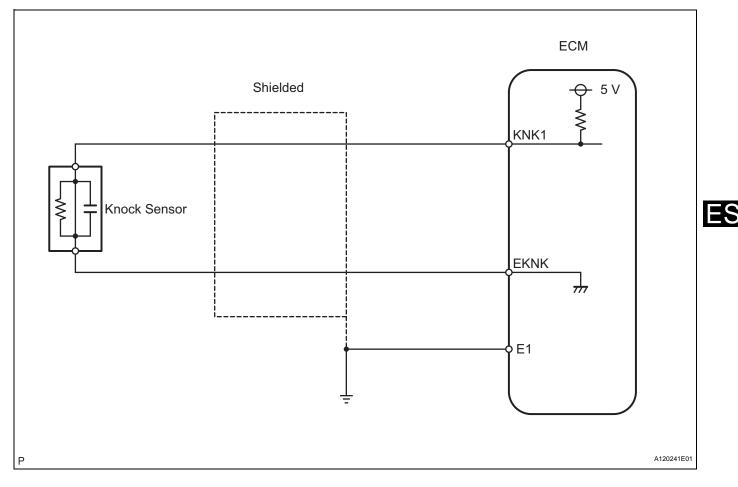
### **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None              |
|------------------------------------------------------------------|-------------------|
| Battery voltage                                                  | 10.5 V or more    |
| Time after engine start                                          | 5 seconds or more |

### **TYPICAL MALFUNCTION THRESHOLDS**

#### Case 1: P0325

| Knock sensor voltage     Less than 0.5 V and more than 4.5 V |
|--------------------------------------------------------------|
|--------------------------------------------------------------|


#### Case 2: P0327

| Knock sensor voltage | Less than 0.5 V |
|----------------------|-----------------|
|----------------------|-----------------|

#### Case 3: P0328

| Knock sensor voltage | More than 4.5 V |
|----------------------|-----------------|

#### WIRING DIAGRAM



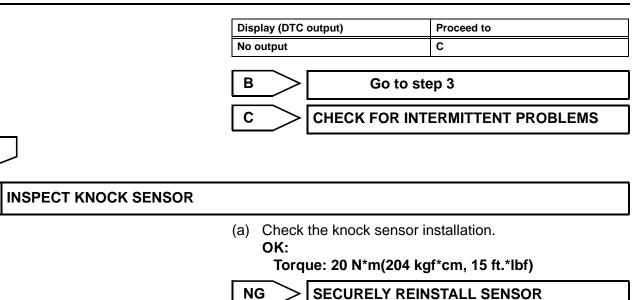
### **INSPECTION PROCEDURE**

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

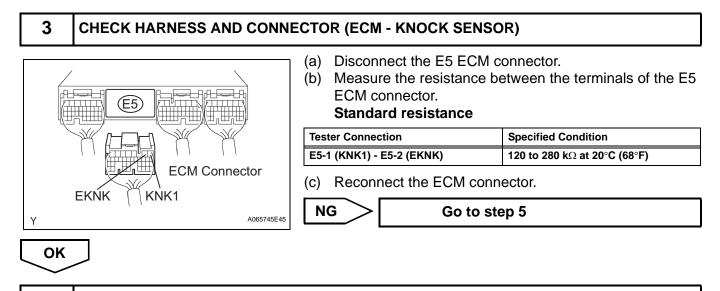
| from the | time the malfunction occurred. |
|----------|--------------------------------|

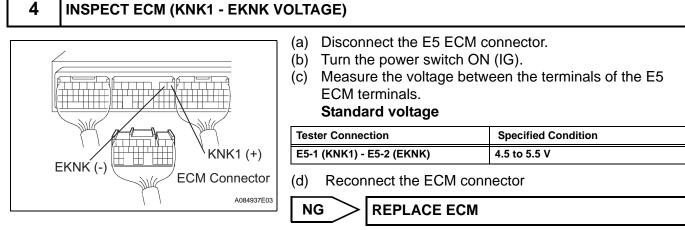
|  | 1 | READ OUTPUT DTCS |
|--|---|------------------|
|--|---|------------------|


- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Clear the DTCs.
- (f) Put the engine in inspection mode (see page ES-1).
- (g) Warm up the engine.
- (h) Run the engine at 2,500 rpm for 10 seconds or more.
- (i) Read DTCs.

#### Result

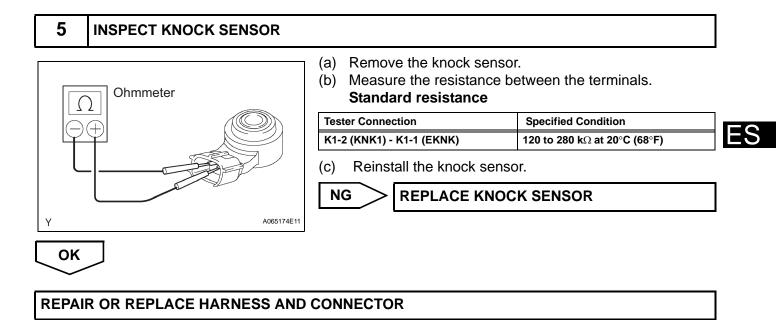
| Display (DTC output)      | Proceed to |  |
|---------------------------|------------|--|
| P0325                     | Α          |  |
| P0325, P0327 and/or P0328 | В          |  |


Α


2



ОК


**REPLACE KNOCK SENSOR** 



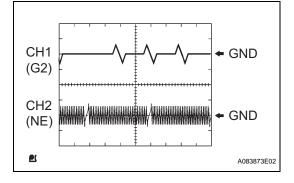


OK

### CHECK FOR INTERMITTENT PROBLEMS



Crankshaft Position Sensor "A" Circuit


### DESCRIPTION

The crankshaft position sensor (CKP) system consists of a crankshaft position sensor plate and a pick-up coil. The sensor plate has 34 teeth and is installed on the crankshaft. The pick-up coil is made of an iron core and magnet. The sensor plate rotates and as each tooth passes through the pick-up coil, a pulse signal is created. The pick-up coil generates 34 signals per engine revolution. Based on these signals, the ECM calculates the crankshaft position and engine RPM. Using these calculations, the fuel injection time and ignition timing are controlled.

| DTC No. | DTC Detection Condition                                              | Trouble Area                                                                                                                                                    |
|---------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0335   | No crankshaft position sensor signal to ECM (2 trip detection logic) | <ul> <li>Open or short in crankshaft position<br/>sensor circuit</li> <li>Crankshaft position sensor</li> <li>Signal plate (crankshaft)</li> <li>ECM</li> </ul> |

Reference: Inspection using an oscilloscope.

P0335



#### HINT:

The correct waveform is as shown.

| Item              | Contents                        |
|-------------------|---------------------------------|
| Terminal          | CH1: G2 - NE-<br>CH2: NE+ - NE- |
| Equipment Setting | 5 V/DIV., 20 ms/DIV.            |
| Condition         | During cranking or idling       |

### MONITOR DESCRIPTION

If there is no signal from the crankshaft sensor despite the engine revolving, the ECM interprets this as malfunction of the sensor.

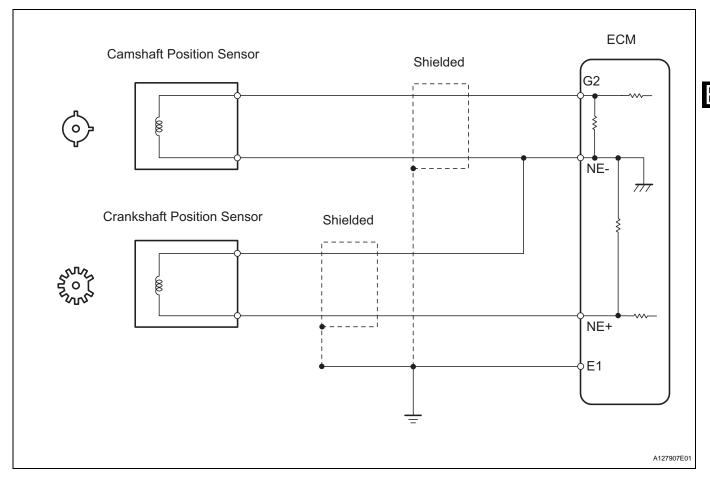
### **MONITOR STRATEGY**

| Related DTCs                | P0335: Crankshaft position sensor range check or rationality |
|-----------------------------|--------------------------------------------------------------|
| Required sensors/components | Crankshaft position sensor                                   |
| Frequency of operation      | Continuous                                                   |
| Duration                    | 4.7 seconds                                                  |
| MIL operation               | 2 driving cycles                                             |
| Sequence of operation       | None                                                         |

### TYPICAL ENABLING CONDITIONS

| The monitor will run whenever the following DTCs are not present | None |
|------------------------------------------------------------------|------|
| Power switch                                                     | ON   |

Engine rotating signal from HV ECU

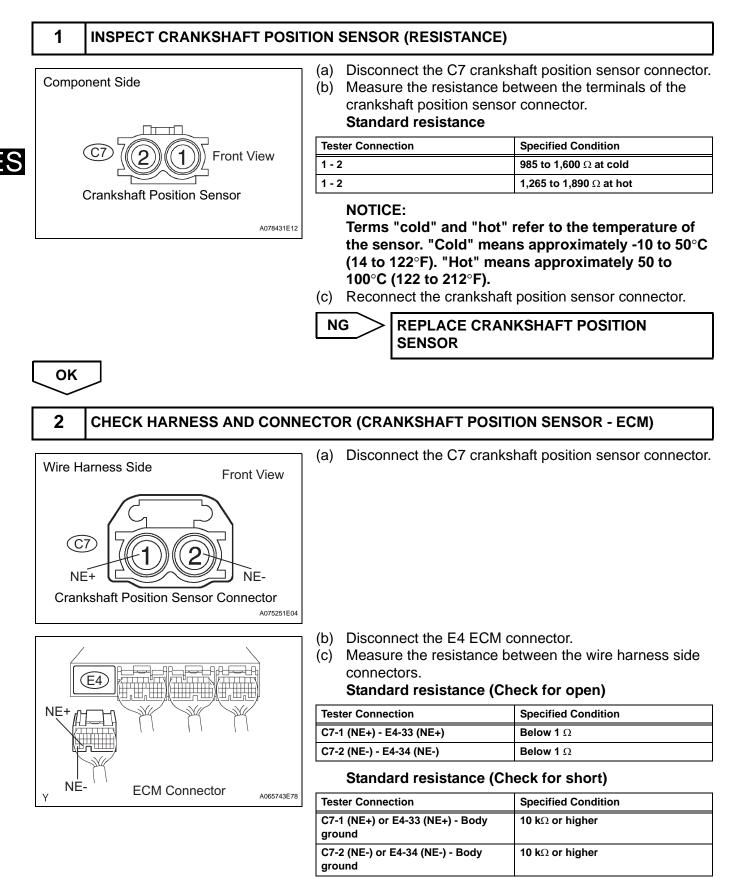

HV ECU judges that the engine is running

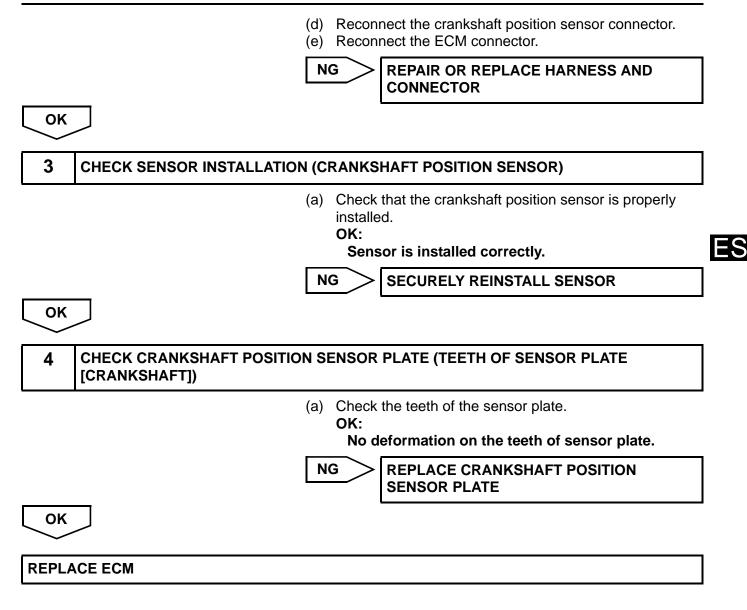
### **TYPICAL MALFUNCTION THRESHOLDS**

```
Engine speed signal
```

No signal for 4.7 seconds

### WIRING DIAGRAM





### **INSPECTION PROCEDURE**

HINT:

- Perform troubleshooting on DTC P0335 first. If no trouble is found, troubleshoot the engine mechanical systems.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- READ VALUE OF INTELLIGENT TESTER (a)Connect the intelligent tester to the DLC3.
  - (b)Turn the power switch ON (IG).
  - (c) Turn the intelligent tester ON.
  - (d)Put the engine in inspection mode (see page ES-1).
  - (e) Start the engine.
  - (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY / ENGINE SPD.
  - (g)Read the value.

• The engine speed can be observed in DATA LIST using the intelligent tester. If there is no NE signal from the crankshaft position sensor despite the engine revolving, the engine speed will be indicated as zero. If voltage output from the crankshaft position sensor is insufficient, the engine speed will be indicated as lower PRM (than the actual RPM).

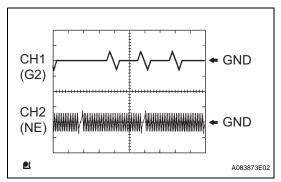




| DTC | P0340 | Camshaft Position Sensor Circuit Malfunction                                          |
|-----|-------|---------------------------------------------------------------------------------------|
| DTC | P0341 | Camshaft Position Sensor "A" Circuit Range /<br>Performance (Bank 1 or Single Sensor) |

### DESCRIPTION

The variable valve timing (VVT) sensor consists of a magnet, iron core and pickup coil.


The variable valve (VV) signal plate has 3 teeth on its outer circumference and is installed on the camshaft. When the camshafts rotate, the protrusion on the signal plate and the air gap on the pickup coil change, causing fluctuations in the magnetic field and generating voltage in the pickup coil.

ES

This sensor monitors a timing rotor located on the camshaft and is used to detect an camshaft angle by the ECM. The camshaft rotation synchronizes with the crankshaft rotation, and this sensor communicates the rotation of the camshaft timing rotor as a pulse signal to the ECM. Based on the signal, the ECM controls fuel injection time and ignition timing.

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                              | Trouble Area                                                                                                                                                                                      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0340   | No camshaft position sensor signal to ECM at<br>engine speed of 600 rpm or more<br>(1 trip detection logic)                                                                                                                                                          | <ul> <li>Open or short in camshaft position sensor<br/>circuit</li> <li>Camshaft position sensor</li> <li>Camshaft timing pulley</li> <li>Timing chain has jumped a tooth</li> <li>ECM</li> </ul> |
| P0341   | While crankshaft rotates twice, camshaft<br>position sensor signal is input to ECM 12<br>times or more (1 trip detection logic)<br>HINT:<br>Under normal condition, the camshaft position<br>sensor signal is input into the ECM 3 times<br>per 2 engine revolutions | <ul> <li>Open or short in camshaft position sensor circuit</li> <li>Camshaft position sensor</li> <li>Camshaft timing pulley</li> <li>Timing chain has jumped a tooth</li> <li>ECM</li> </ul>     |

Reference: Inspection using an oscilloscope.



#### HINT:

The correct waveform is as shown.

| Item              | Contents                        |
|-------------------|---------------------------------|
| Terminal          | CH1: G2 - NE-<br>CH2: NE+ - NE- |
| Equipment Setting | 5 V/DIV., 20 ms/DIV.            |
| Condition         | During cranking or idling       |

### MONITOR DESCRIPTION

If there is no signal from the VVT sensor even though the engine is turning, or if the rotation of the camshaft and the crankshaft is not synchronized, the ECM interprets this as a malfunction of the sensor.

### **MONITOR STRATEGY**

| Related DTCs                | P0340: Camshaft position sensor (bank 1) range check or rationality<br>P0341: Camshaft position sensor (bank 1) range check or rationality |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Required sensors/components | Main:<br>Camshaft position sensor<br>Related:<br>Crankshaft position sensor, engine speed sensor                                           |
| Frequency of operation      | Continuous                                                                                                                                 |
| Duration                    | 5 seconds                                                                                                                                  |
| MIL operation               | Immediately                                                                                                                                |
| Sequence of operation       | None                                                                                                                                       |

### **TYPICAL ENABLING CONDITIONS**

#### P0340:

| The monitor will run whenever the following DTCs are not present | None            |
|------------------------------------------------------------------|-----------------|
| Engine speed                                                     | 600 rpm or more |

#### P0341:

| The monitor will run whenever the following DTCs are not present | None                                 |
|------------------------------------------------------------------|--------------------------------------|
| Engine rotating signal from HV ECU                               | HV ECU judges that engine is running |
| Engine revolution angle                                          | 720 °CA*                             |

#### \*: CA stands for Crankshaft Angle.

## TYPICAL MALFUNCTION THRESHOLDS P0340:

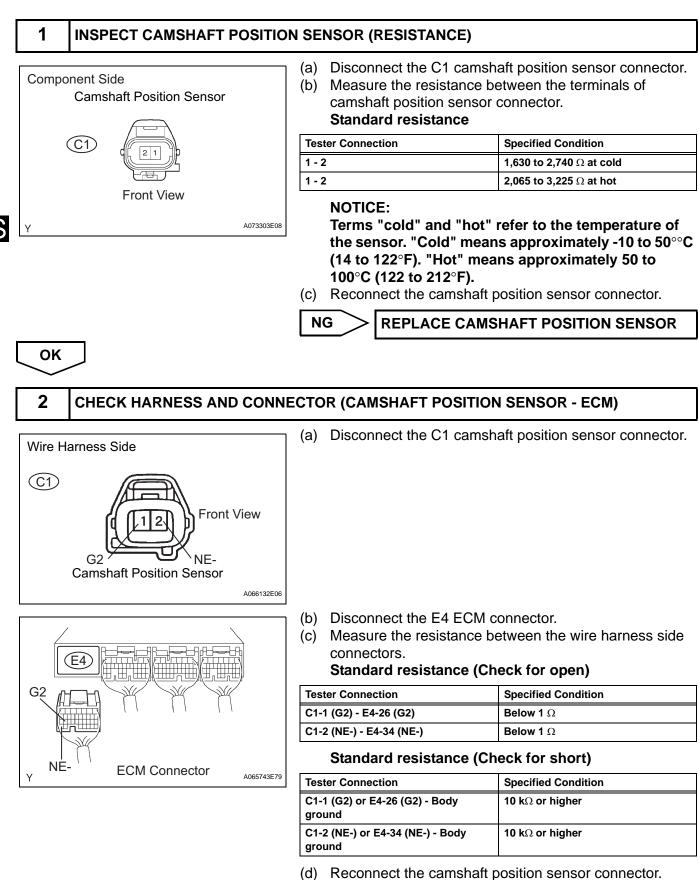
|                                 | Not synchronized (judged by comparing the crankshaft position with the camshaft position) |
|---------------------------------|-------------------------------------------------------------------------------------------|
| Camshaft position sensor signal | No input in appropriate timing                                                            |

#### P0341:

| Crankshaft/Camshaft synchronization | Not synchronized                              |
|-------------------------------------|-----------------------------------------------|
| Camshaft position sensor count      | 12 or more / 720°CA* (= 2 engine revolutions) |

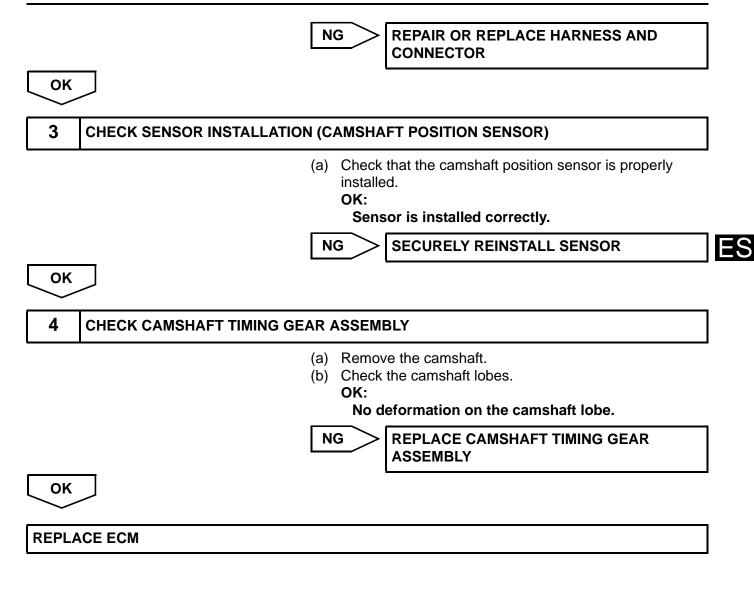
### **COMPONENT OPERATING RANGE**

| Camshaft position sensor signal input every 720°CA | 2 times |
|----------------------------------------------------|---------|
| Camshaft position sensor signal input every 720°CA | 3 times |


### WIRING DIAGRAM

Refer to DTC P0335 (see page ES-160).

### **INSPECTION PROCEDURE**


HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.



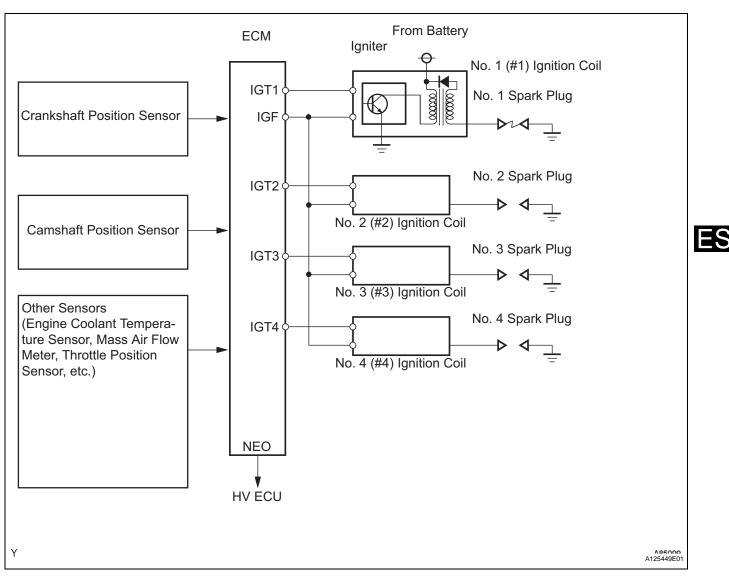
(e) Reconnect the ECM connector.





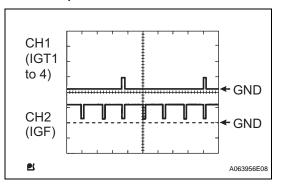
| DTC | P0351 | Ignition Coil "A" Primary / Secondary Circuit |
|-----|-------|-----------------------------------------------|
| DTC | P0352 | Ignition Coil "B" Primary / Secondary Circuit |
| DTC | P0353 | Ignition Coil "C" Primary / Secondary Circuit |
| DTC | P0354 | Ignition Coil "D" Primary / Secondary Circuit |

### DESCRIPTION


HINT:

- These DTCs indicate malfunction related to the primary circuit.
- If DTC P0351 is displayed, check the No.1 (#1) ignition coil circuit.
- If DTC P0352 is displayed, check the No.2 (#2) ignition coil circuit.
- If DTC P0353 is displayed, check the No.3 (#3) ignition coil circuit.
- If DTC P0354 is displayed, check the No.4 (#4) ignition coil circuit.

A Direct Ignition System (DIS) is used on this vehicle.

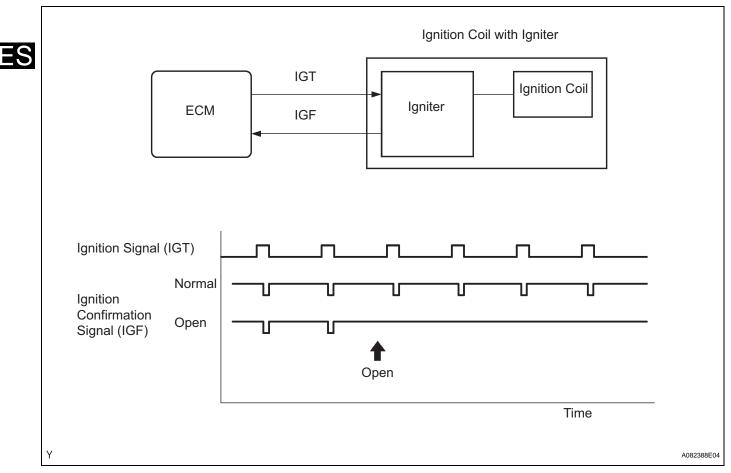

The DIS is a 1-cylinder ignition system which ignites one cylinder with one ignition coil. In the 1-cylinder ignition system, the one spark plug is connected to the end of the secondary winding. High voltage generated in the secondary winding is applied directly to the spark plug. The spark of the spark plug passes from the center electrode to the ground electrode.

The ECM determines the ignition timing and outputs the ignition (IGT) signals for each cylinder. Using the IGT signal, the ECM turns ON and OFF the power transistor inside the igniter and this switches ON and OFF the current to the primary coil. When the current flow to the primary coil is cut off, high-voltage is generated in the secondary coil and this voltage is applied to the spark plugs to spark inside the cylinders. As the ECM cuts the current to the primary coil, the igniter sends back the ignition confirmation (IGF) signal to the ECM.



| DTC No.                          | DTC Detection Condition                      | Trouble Area                                                                                                                                                                                                                                     |
|----------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0351<br>P0352<br>P0353<br>P0354 | No IGF signal to ECM while engine is running | <ul> <li>Ignition system</li> <li>Open or short in IGF or IGT circuit from ignition coil with igniter to ECM (ignition coil circuit 1 through 4)</li> <li>Ignition coil with igniter (ignition coil circuit 1 through 4)</li> <li>ECM</li> </ul> |

Reference: Inspection using an oscilloscope.




#### HINT:

The correct waveform is as shown.

| Item              | Contents                                          |
|-------------------|---------------------------------------------------|
| Terminal          | CH1: IGT1, IGT2, IGT3, IGT4 - E1<br>CH2: IGF - E1 |
| Equipment Setting | 2 V/DIV., 20 ms/DIV.                              |
| Condition         | While the engine is cranking or idling            |

### MONITOR DESCRIPTION



If the ECM does not receive the ignition confirmation (IGF) signal after sending the ignition (IGT) signal, the ECM interprets this as a fault in the igniter and sets a DTC.

### **MONITOR STRATEGY**

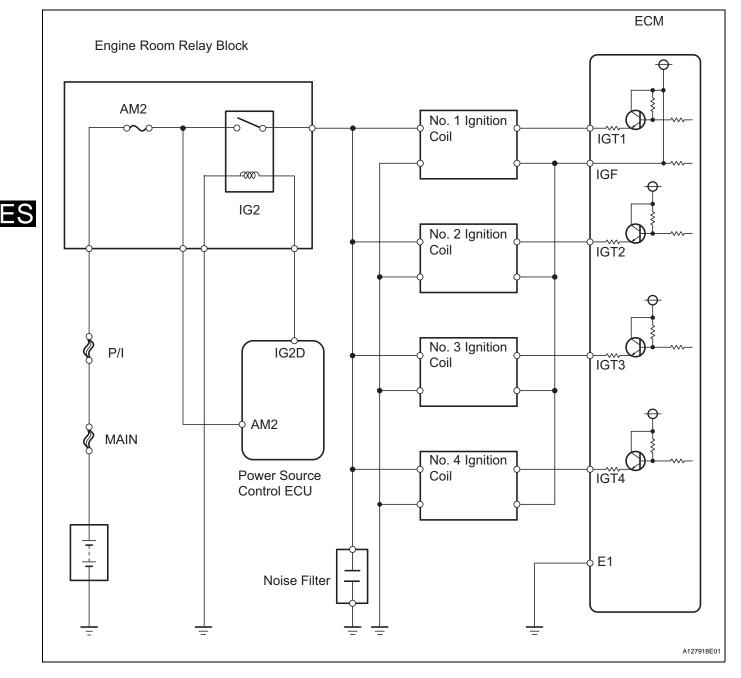
| Related DTCs                | P0351: Ignition coil with igniter circuit (#1) malfunction<br>P0352: Ignition coil with igniter circuit (#2) malfunction<br>P0353: Ignition coil with igniter circuit (#3) malfunction<br>P0354: Ignition coil with igniter circuit (#4) malfunction |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required sensors/components | Igniter                                                                                                                                                                                                                                              |
| Frequency of operation      | Continuous                                                                                                                                                                                                                                           |
| Duration                    | 0.256 seconds                                                                                                                                                                                                                                        |
| MIL operation               | Immediately                                                                                                                                                                                                                                          |
| Sequence of operation       | None                                                                                                                                                                                                                                                 |

### TYPICAL ENABLING CONDITIONS

| The monitor will run whenever the following DTCs are not present | None              |
|------------------------------------------------------------------|-------------------|
| Engine speed                                                     | 1,500 rpm or less |
| Either of the following conditions is met:                       | (a) or (b)        |
| (a) Following conditions are met:                                | 1&2               |
| 1. Engine speed                                                  | 500 rpm or less   |
| 2. Battery voltage                                               | 6 V or more       |
| (b) Following conditions are met:                                | 1&2               |
| 1. Engine speed                                                  | More than 500 rpm |
| 2. Battery voltage                                               | 10 V or more      |

### **TYPICAL MALFUNCTION THRESHOLDS**

| ition signal fail count* | More than 2 times |
|--------------------------|-------------------|
|--------------------------|-------------------|


\*: Counted when the IGF signal is not returned to the ECM despite sending the IGT signal.

### **COMPONENT OPERATING RANGE**

| Number of IGF signals | Equals the number of IGT signals |
|-----------------------|----------------------------------|
|-----------------------|----------------------------------|

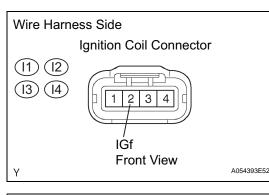
ES

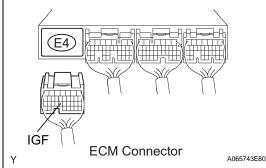
### WIRING DIAGRAM



### **INSPECTION PROCEDURE**

HINT:


Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.


| 1 CHECK SPARK PLUG AND SPARK OF MISFIRING CYLINDER |  |
|----------------------------------------------------|--|
| OK:<br>Spark occurs.                               |  |
| NG Go to step 4                                    |  |

OK

2

#### CHECK HARNESS AND CONNECTOR (IGNITION COIL - ECM (IGF SIGNAL TERMINAL))





(a) Disconnect the I1, I2, I3 or I4 ignition coil and igniter connector.

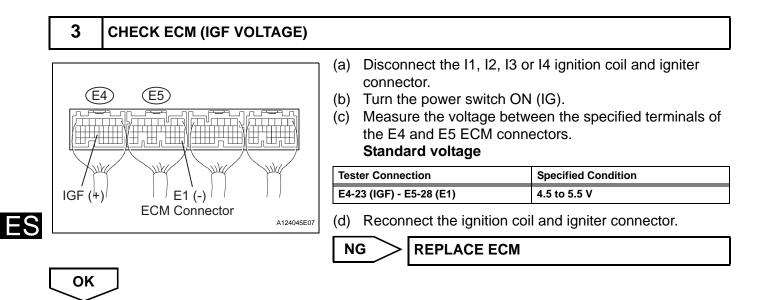
- (b) Disconnect the E4 ECM connector.
- (c) Measure the resistance between the wire harness side connectors.

#### Standard resistance (Check for open)

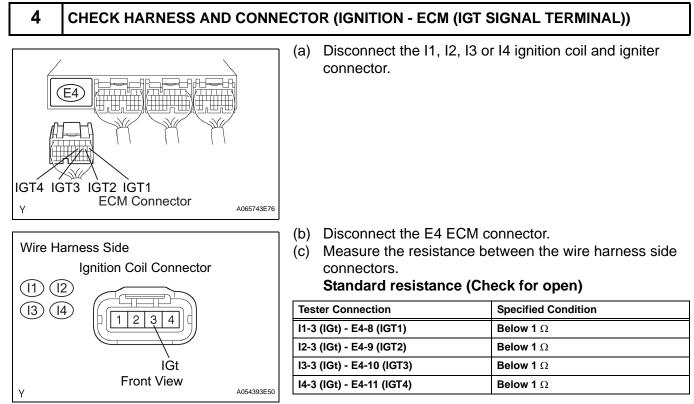
| Tester Connection        | Specified Condition |
|--------------------------|---------------------|
| l1-2 (IGf) - E4-23 (IGF) | Below 1 $\Omega$    |
| l2-2 (IGf) - E4-23 (IGF) | Below 1 $\Omega$    |
| I3-2 (IGf) - E4-23 (IGF) | Below 1 $\Omega$    |
| I4-2 (IGf) - E4-23 (IGF) | Below 1 $\Omega$    |

#### Standard resistance (Check for short)

| Tester Connection                          | Specified Condition     |
|--------------------------------------------|-------------------------|
| I1-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |
| I2-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |
| I3-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |
| I4-2 (IGf) or E4-23 (IGF) - Body<br>ground | 10 k $\Omega$ or higher |


(d) Reconnect the ignition coil and igniter connector.

(e) Reconnect the ECM connector.


NG

REPAIR OR REPLACE HARNESS AND CONNECTOR





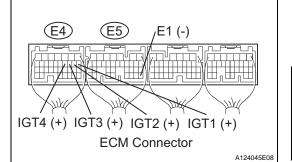
**REPLACE IGNITION COIL** 



#### Standard resistance (Check for short)

| Tester Connection                           | Specified Condition     |
|---------------------------------------------|-------------------------|
| I1-3 (IGT) or E4-8 (IGT1) - Body<br>ground  | 10 kΩ or higher         |
| I2-3 (IGT) or E4-9 (IGT2) - Body<br>ground  | 10 k $\Omega$ or higher |
| I3-3 (IGT) or E4-10 (IGT3) - Body<br>ground | 10 k $\Omega$ or higher |
| I4-3 (IGT) or E4-11 (IGT4) - Body<br>ground | 10 k $\Omega$ or higher |

- (d) Reconnect the ignition coil and igniter connector.
- (e) Reconnect the ECM connector.




REPAIR OR REPLACE HARNESS AND CONNECTOR

<u>~</u> 5

OK

CHECK ECM (IGT1, IGT2, IGT3 OR IGT4 VOLTAGE)



(a) Measure the voltage between the applicable terminals of the E4 and E5 ECM connectors when the engine is cranked.
 Standard voltage

| Tester Connection          | Specified Condition |
|----------------------------|---------------------|
| E4-8 (IGT1) - E5-28 (E1)   | 0.1 to 4.5 V        |
| E4-9 (IGT2) - E5-28 (E1)   | 0.1 to 4.5 V        |
| E4-10 (IGT3) - E5-28 (E1)  | 0.1 to 4.5 V        |
| E4-11 (IGT4) - E5-28 ( E1) | 0.1 to 4.5 V        |

NG > REPLACE ECM

ОК

(E4)

(E5)

IGT4 (+) IGT3 (+) IGT2 (+) IGT1 (+) ECM Connector

#### 6 CHECK ECM (IGT1, IGT2, IGT3 OR IGT4 VOLTAGE)

A124045E08

,E1 (-)

- (a) Disconnect the I1, I2, I3 or I4 ignition coil and igniter connector.
- (b) Measure the voltage between the applicable terminals of the E4 and E5 ECM connectors when the engine is cranked.

#### Standard voltage

| Tester Connection         | Specified Condition |
|---------------------------|---------------------|
| E4-8 (IGT1) - E5-28 (E1)  | 4.5 V or more       |
| E4-9 (IGT2) - E5-28 (E1)  | 4.5 V or more       |
| E4-10 (IGT3) - E5-28 (E1) | 4.5 V or more       |
| E4-11 (IGT4) - E5-28 (E1) | 4.5 V or more       |

(c) Reconnect the ignition coil and igniter connector.



ОК

#### 7 CHECK IGNITION COIL (POWER SOURCE) (a) Disconnect the I1, I2, I3 or I4 ignition coil and igniter Wire Harness Side connector. (b) Turn the power switch ON (IG). (c) Measure the voltage between the terminal of the wire (11) (12)harness side connector and body ground. (13)(14)Front View 3 4 Standard voltage **Specified Condition Tester Connection** I1-1 (+B) - I1-4 (GND) 9 to 14 V +B (+) GND (-) Ignition Coil and Igniter Connector 9 to 14 V I2-1 (+B) - I2-4 (GND) A054393E53 I3-1 (+B) - I3-4 (GND) 9 to 14 V I4-1 (+B) - I4-4 (GND) 9 to 14 V Reconnect the ignition coil and igniter connector. (d) OK **REPLACE IGNITION COIL** NG 8 CHECK HARNESS AND CONNECTOR (IGNITION COIL - IG2 RELAY) (a) Disconnect the I1, I2, I3 or I4 ignition coil and igniter Wire Harness Side connector. (11) 12 (13)(14)Front View 2 3 4 +B (+) GND (-) Ignition Coil and Igniter Connector A054393E53 Y Remove the integration relay from engine room relay (b) block. (c) Measure the resistance between the wire harness side connectors. Standard resistance (Check for open) **Tester Connection Specified Condition** 4(31 -I1-1 (+B) - 3I-4 (IG2 relay) Below 1 Ω Engine Room Relay Block -I2-1 (+B) - 3I-4 (IG2 relay) Below 1 $\Omega$ I3-1 (+B) - 3I-4 (IG2 relay) Below 1 Ω A082810E02 Below 1 Ω I4-1 (+B) - 3I-4 (IG2 relay) I1-4 (GND) - Body ground Below 1 Ω I2-4 (GND) - Body ground Below 1 Ω I3-4 (GND) - Body ground Below 1 Ω I4-4 (GND) - Body ground Below 1 $\Omega$ Standard resistance (Check for short)

| Tester Connection                              | Specified Condition     |
|------------------------------------------------|-------------------------|
| I1-1 (+B) or 3I-4 (IG2 relay) - Body<br>ground | 10 k $\Omega$ or higher |

| Tester Connection                              | Specified Condition     |
|------------------------------------------------|-------------------------|
| I2-1 (+B) or 3I-4 (IG2 relay) - Body<br>ground | 10 k $\Omega$ or higher |
| I3-1 (+B) or 3I-4 (IG2 relay) - Body<br>ground | 10 k $\Omega$ or higher |
| I4-1 (+B) - 3I-4 (IG2 relay)                   | 10 k $\Omega$ or higher |

- (d) Reconnect the ignition coil and igniter connector.(e) Reinstall the integration relay.



ΟΚ

**REPLACE IGNITION COIL** 

ES

| DTC |  | Catalyst System Efficiency Below Threshold (Bank 1) |
|-----|--|-----------------------------------------------------|
|-----|--|-----------------------------------------------------|

#### MONITOR DESCRIPTION

The ECM uses 2 sensors mounted before and after the three-way catalytic converter (TWC) to monitor its' efficiency. The air-fuel ratio (A/F) sensor (sensor 1) sends pre-catalyst information to the ECM. The heated oxygen (O2) sensor (sensor 2) sends post-catalyst information to the ECM.

In order to detect deterioration in the catalyst, the ECM calculates Oxygen Storage Capacity (OSC) in the catalyst based on voltage output of the sensor 2 while performing "active air-fuel ratio control" instead of the conventional detecting method which uses the locus ratio.

The OSC is an indication value of the catalyst oxygen storage capacity and is used for representing how much the catalyst can store oxygen. When the vehicle is being driven with a warm engine, the active airfuel ratio control is performed for approximately 15 to 20 seconds. When it is performed, the air-fuel ratio is forcibly regulated to go LEAN or RICH by the ECM, and if a RICH and LEAN cycle of the sensor 2 is long, the OSC will become greater. The greater OSC and capability of the catalyst are mutually related. The ECM judges if the catalyst has deteriorated based on the calculated OSC value. The ECM will illuminate the MIL and a DTC will be set.

| DTC No. | DTC Detection Condition                                                               | Trouble Area                                                                                                                                                                                    |
|---------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0420   | OSC value is smaller than the standard value<br>under "active air-fuel ratio control" | <ul> <li>Exhaust manifold with front catalyst and<br/>exhaust front pipe with rear catalyst</li> <li>Gas leakage in exhaust system</li> <li>A/F sensor</li> <li>Heated oxygen sensor</li> </ul> |

HINT:

- Sensor 1 refers to the sensor mounted before the TWC and is located near the engine assembly.
- Sensor 2 refers to the sensor mounted after the TWC and is located far from the engine assembly.

## **MONITOR STRATEGY**

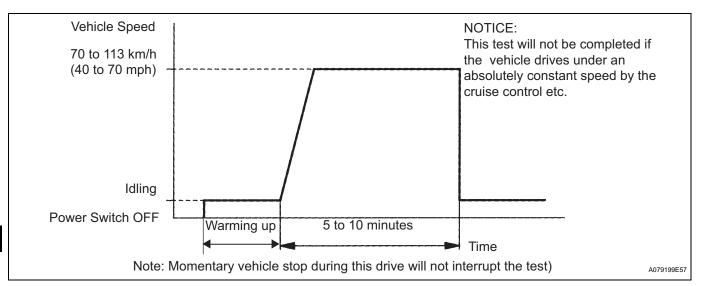
| Related DTCs                | P0420: Bank 1 catalyst is deterioration                                                                                                                                |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required sensors/components | Main:<br>A/F sensor, heated oxygen sensor<br>Related:<br>Mass air flow meter, engine coolant temperature sensor, engine speed<br>sensor, intake air temperature sensor |
| Frequency of operation      | Once per driving cycle                                                                                                                                                 |
| Duration                    | 30 seconds                                                                                                                                                             |
| MIL operation               | 2 driving cycles                                                                                                                                                       |
| Sequence of operation       | None                                                                                                                                                                   |

## **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | P0011 (VVT system 1 - Advance)         P0012 (VVT system 1 - Retard)         P0031, P0032 (A/F sensor heater - Sensor 1)         P0037, P0038 (O2 sensor heater - Sensor 2)         P0100 - P0103 (MAF meter)         P0115 - P0118 (ECT sensor)         P0120 - P0223, P2135 (TP sensor)         P0125 (Insufficient ECT for closed loop)         P0136 (O2 sensor - Sensor 2)         P0171, P0172 (Fuel system)         P0300 - P0304 (Misfire)         P0335 (CKP sensor)         P0351-P0354 (Igniter)         P0442 - P0456 (EVAP system)         P0500 (VSS)         P2196 (A/F sensor - Slow response) |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Battery voltage                                                  | 11.5 V or more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Altitude                                                         | Less than 2,400 m (8,000 ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Intake air temperature                                           | -10 °C (14°F) or more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Idle                                                             | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Engine speed                                                     | Less than 3,200 rpm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Engine coolant temperature                                       | 75°C (157°F) or more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Estimated catalyst temperature conditions are met:               | 1&2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1. Upstream estimated catalyst temperature                       | Less than 800°C (1,508°F), and 430°C (806°F) or more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. Downstream estimated catalyst temperature                     | Less than 675°C (1,292°F), and 290°C (554°F) or more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fuel system status                                               | Closed-loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

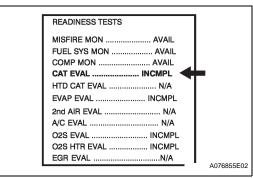
## **TYPICAL MALFUNCTION THRESHOLDS**

| Oxygen storage capacity | Less than 0.03 g |
|-------------------------|------------------|


## **MONITOR RESULT**

Refer to detailed information (see page ES-15).

## **CONFIRMATION DRIVING PATTERN**


PURPOSE (see page ES-17) HINT:

Performing this confirmation pattern will activate the catalyst monitoring by the ECM. This is very useful for verifying the completion of repairs.

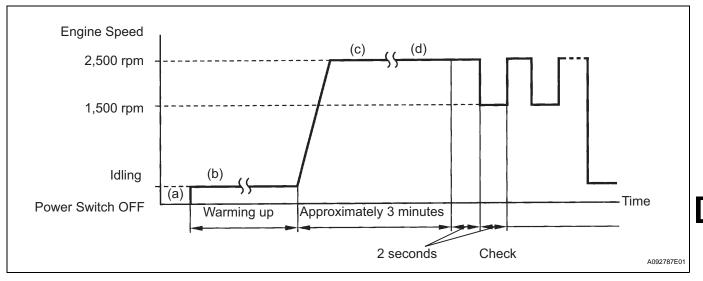


- (a) Clear the DTCs.
- (b) Connect the intelligent tester to the DLC3.

(c) Enter the following menus: DIAGNOSIS / CARB OBD II / READINESS TESTS. Check that CAT EVAL is INCMPL (incomplete).



(d) Drive the vehicle according to the confirmation driving pattern. Note the state of the Readiness Tests. They will change to COMPL (complete) as the CAT evaluation monitors operate.


(e) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / PENDING CODES. Check if any DTC (any pending code) is set.

If the READINESS CODE of CAT EVAL was INCMPL and any DTC (includes pending codes) was not set, extend the driving time.

#### NOTICE:

If you do not have the intelligent tester, perform again the same confirmation driving pattern after turning OFF the power switch upon finishing the first confirmation driving pattern.

## CONDITIONING FOR SENSOR TESTING

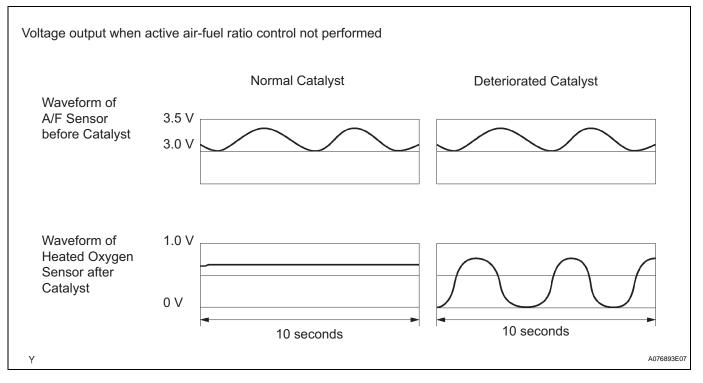


(a) Connect the intelligent tester to the DLC3.

(b) Put the engine in inspection mode (see page ES-1).

(c) Start the engine and warm it up with all the accessories switched OFF until the engine coolant temperature becomes table.

(d) Run the engine at 2,500 rpm for approximately 3 minutes.


(e) Run the engine at 2,500 rpm for 2 seconds and then 1,500 rpm for 2 seconds.

(f) Check the waveform of the oxygen sensor (sensor 2).

HINT:

If output of the A/F sensor or the heated oxygen sensor does not fluctuate or has noise, the sensor may be malfunctioning.

If voltage output of both sensors remain at LEAN or RICH, the air-fuel ratio may be extremely LEAN or RICH. In such a case, perform the following A/F CONTROL operation in ACTIVE TEST using the intelligent tester. If the catalyst has deteriorated, the voltage output of the heated oxygen sensor fluctuates up and down widely even under normal driving ("active air-fuel ratio control" is not performed).



#### **INSPECTION PROCEDURE**

HINT:

- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition
  when malfunction is detection. When troubleshooting, freeze frame data can help determine if the
  vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or
  rich, and other data from the time the malfunction occurred.
- Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform the ACTIVE TEST A/F CONTROL operation..

- The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%.
  - (1) Connect the intelligent tester to the DLC3.
  - (2) Turn the power switch ON (IG).
  - (3) Put the engine in inspection mode (see page ES-1).

(4) Warm up the engine by running the engine at 2,500 rpm, depressing the accelerator pedal more than 60% for approximately 90 seconds.

(5) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.

(6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

Result:

A/F sensor reacts in accordance with increase and decrease of injection volume:

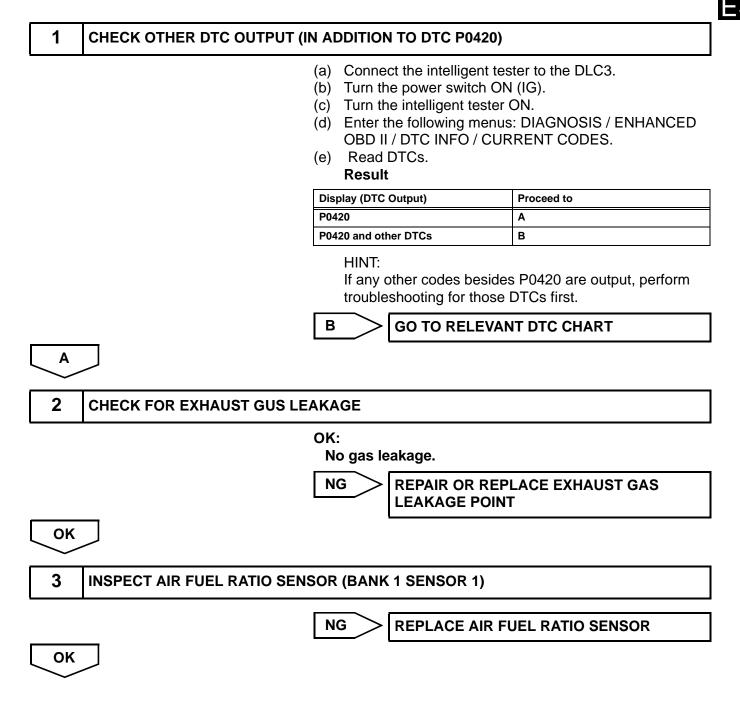
+25%  $\rightarrow$  rich output: Less than 3.0 V

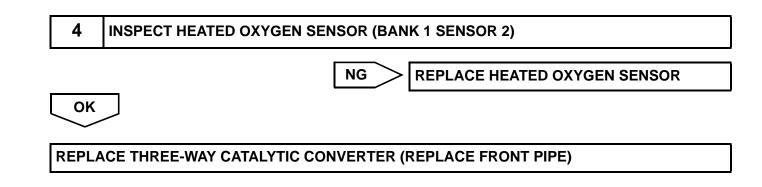
-12.5%  $\rightarrow$  lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume: +25%  $\to$  rich output: More than 0.55 V

-12.5%  $\rightarrow$  lean output: Less than 0.4 V

#### NOTICE:


The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.


| Case | A/F Sensor (Sensor 1) Output Voltage                  |    | HO2 Sensor (Sensor 2) Output Voltage                  |      | Main Suspected<br>Trouble Area                            |
|------|-------------------------------------------------------|----|-------------------------------------------------------|------|-----------------------------------------------------------|
| 1    | Injection Volume<br>+25%<br>-12.5%                    | ♠  | Injection Volume<br>+25%<br>-12.5%                    | ♠[][ |                                                           |
|      | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V | ок | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | ок   |                                                           |
| 2    | Injection Volume<br>+25%<br>-12.5%                    | ♠  | Injection Volume<br>+25%<br>-12.5%                    | ♠[]  | <ul> <li>A/F sensor</li> <li>A/F sensor heater</li> </ul> |
| 2    | Output Voltage<br>Almost<br>no reaction               | NG | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | Лок  | A/F sensor circuit                                        |
| 3    | Injection Volume<br>+25%<br>-12.5%                    | ♠  | Injection Volume<br>+25%<br>-12.5%                    | ♠[]  | <ul> <li>HO2 sensor</li> <li>HO2 sensor heater</li> </ul> |
| 5    | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V | С  | Output Voltage<br>Almost<br>no reaction               | NG   | HO2 sensor circuit                                        |

| Case | A/F Sensor (Sensor 1) Output Voltage    |    | HO2 Sensor (Sensor 2) Output Voltage    |    | Main Suspected<br>Trouble Area                                                     |
|------|-----------------------------------------|----|-----------------------------------------|----|------------------------------------------------------------------------------------|
| 4    | Injection Volume<br>+25%<br>-12.5%      | ♠  | Injection Volume<br>+25%<br>-12.5%      | ♠  | <ul> <li>Fuel Injector</li> <li>Fuel pressure</li> <li>Gas leakage from</li> </ul> |
| 4    | Output Voltage<br>Almost<br>no reaction | NG | Output Voltage<br>Almost<br>no reaction | NG | exhaust system (Air-<br>fuel ratio extremely<br>or lean rich)                      |

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

To display the graph, enter ACTIVE TEST/ A/F CONTROL/USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button.





| DTC | P043E | Evaporative Emission System Reference Ori-<br>fice Clog Up   |
|-----|-------|--------------------------------------------------------------|
| DTC | P043F | Evaporative Emission System Reference Ori-<br>fice High Flow |
| DTC | P2401 | Evaporative Emission Leak Detection Pump<br>Stuck OFF        |
| DTC | P2402 | Evaporative Emission Leak Detection Pump<br>Stuck ON         |
| DTC | P2419 | Evaporative Emission Pressure Switching<br>Valve Stuck ON    |

## **DTC SUMMARY**

| DTC No.                                   | Monitoring Items             | Malfunction<br>Detection<br>Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trouble Areas                                                                                                                                                                                                                                                                                                                                      | Detection Timing | Detection Logic |
|-------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| P043E<br>P043F<br>P2401<br>P2402<br>P2419 | Reference orifice<br>clogged | <ul> <li>P043E, P043F,</li> <li>P2401, P2402 and</li> <li>P2419 are present</li> <li>when one of the</li> <li>following conditions is</li> <li>met during key-off</li> <li>EVAP monitor: <ul> <li>EVAP monitor:</li> <li>EVAP pressure</li> <li>just after</li> <li>reference</li> <li>pressure than 752</li> <li>mmHg-a</li> </ul> </li> <li>Reference</li> <li>pressure less than 724 mmHg-a</li> <li>Reference</li> <li>pressure greater than 752 mmHg-a</li> <li>Reference</li> <li>pressure is not saturated</li> <li>Reference</li> <li>pressure difference</li> <li>between first and second is 5 mmHg-g or more</li> <li>HINT:</li> <li>These values are typical</li> </ul> | <ul> <li>Canister pump<br/>module<br/>(Reference<br/>orifice, leak<br/>detection pump,<br/>vent valve)</li> <li>Connector/wire<br/>harness<br/>(Canister pump<br/>module - ECM)</li> <li>EVAP system<br/>hose (pipe from<br/>air inlet port to<br/>canister pump<br/>module, canister<br/>filter, fuel tank<br/>vent hose)</li> <li>ECM</li> </ul> | Power switch OFF | 2 trip          |

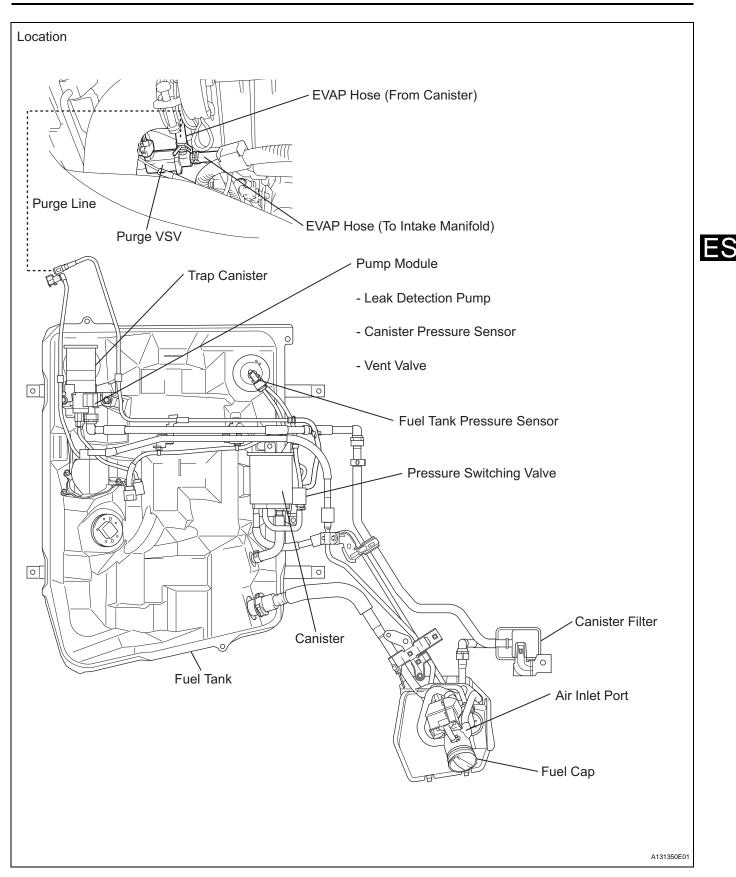
ES

## DESCRIPTION

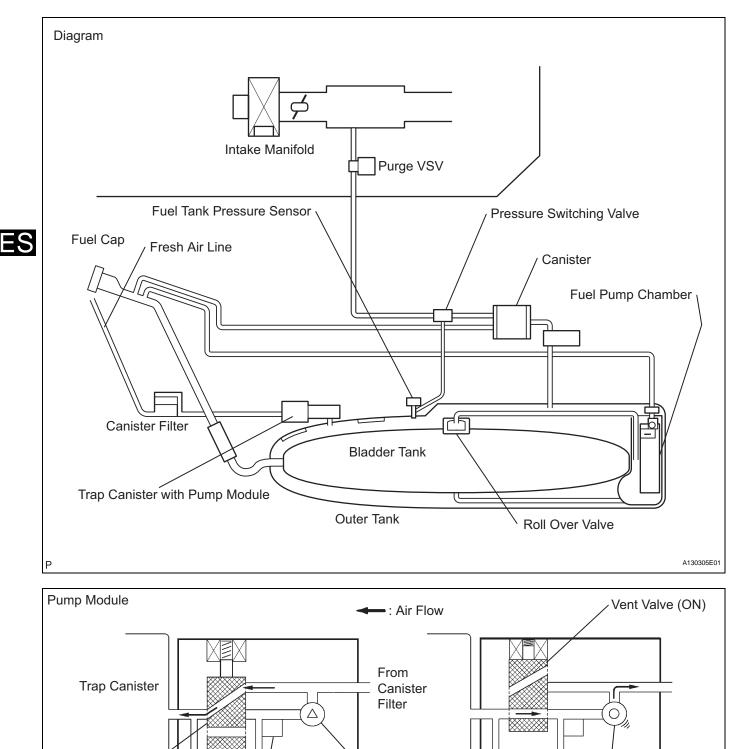
#### NOTICE:

In this vehicle's EVAP system, turning ON the vent valve does not seal off the EVAP system. To check for leaks in the EVAP system, disconnect the air inlet vent hose and apply pressure from the atmosphere side of the canister.

While the engine is running, if a predetermined condition (closed loop, etc.) is met, the purge VSV is opened by the ECM and stored fuel vapors in the canister are purged to the intake manifold. The ECM changes the duty cycle ratio of the purge VSV to control purge flow volume.


The purge flow volume is also determined by the intake manifold pressure. Atmospheric pressure is allowed into the canister through the vent valve to ensure that the purge flow is maintained when the negative pressure (vacuum) is applied to the canister.

#### **Key-off monitor**


This monitor checks for Evaporative Emission (EVAP) system leaks and canister pump module malfunctions. The monitor starts 5 hours\* after the power switch is turned OFF. More than 5 hours are required to allow the fuel to cool down to stabilize the Fuel Tank Pressure (FTP), thus making the EVAP system monitor more accurate.

The leak detection pump creates negative pressure (vacuum) in the EVAP system and the pressure is measured. Finally, the ECM monitors for leaks from the EVAP system and malfunctions in both the canister pump module and purge VSV, based on the EVAP pressure. HINT:

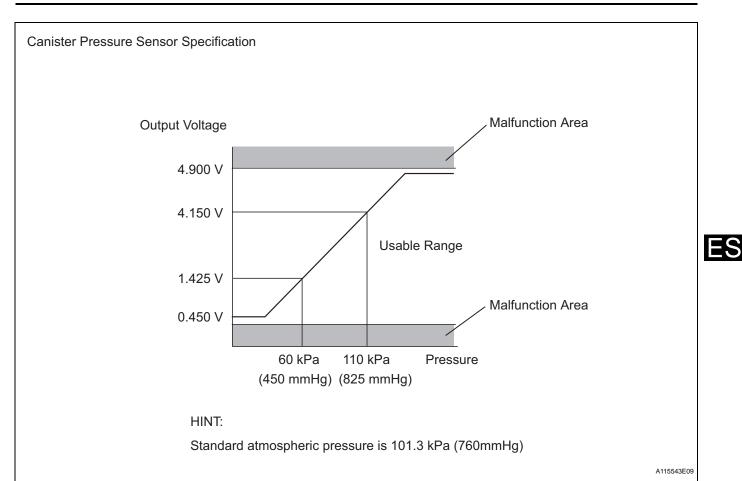
\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.



#### ES-194



Leak Detection Pump (OFF)


Leak Detection Pump (ON)

A131438E01

Vent Valve (OFF)

**Reference Orifice** 

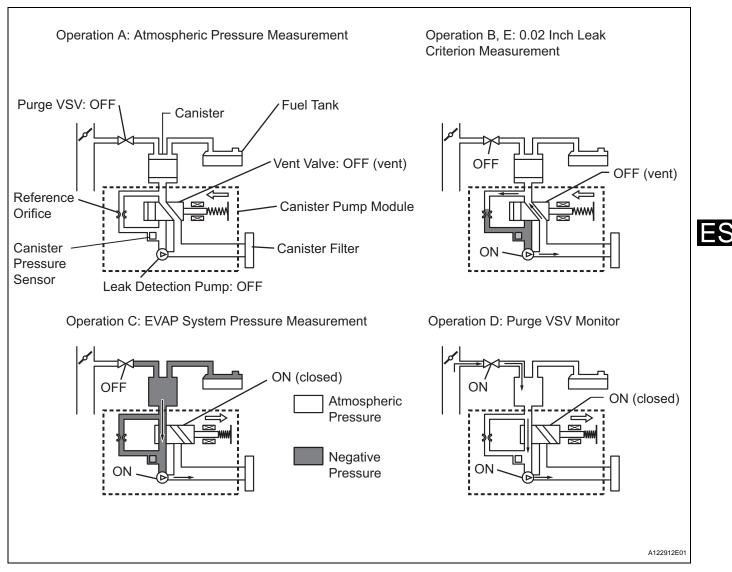
Pressure Sensor



| Components                         | Operations                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canister, Trap canister            | Contains activated charcoal to absorb EVAP generated in fuel tank.                                                                                                                                                                                                                                                                                |
| Cut-off valve                      | Located in fuel tank. Valve floats and closes when fuel tank 100% full.                                                                                                                                                                                                                                                                           |
| Purge Vacuum Switching Valve (VSV) | Opens or closes line between canister and intake manifold. ECM uses<br>purge VSV to control EVAP purge flow. In order to discharge EVAP<br>absorbed by canister to intake manifold, ECM opens purge VSV.<br>EVAP discharge volume to intake manifold controlled by purge VSV<br>duty cycle ratio (current-carrying time) (open: ON; closed: OFF). |
| Roll-over valve                    | Located in fuel tank. Valve closes by its own weight when vehicle overturns to prevent fuel from spilling out.                                                                                                                                                                                                                                    |
| Soak timer                         | Built into ECM. To ensure accurate EVAP monitor, measures 5 hours (+-15 min) after power switch OFF. This allows fuel to cool down, stabilizing Fuel Tank Pressure (FTP). When approximately 5 hours elapsed, ECM activates.                                                                                                                      |
| Pressure switching valve           | The pressure switching valve located on the canister is used to detect<br>leakage from the bladder tank into the fuel tank. The valve opens<br>during the bladder tank leak check. Then, the fuel tank's fuel vapor<br>flows to the intake manifold without passing the canister.                                                                 |
| Pump module                        | Consists of (a) to (d) below. pump module cannot be disassembled.                                                                                                                                                                                                                                                                                 |
| (a) Vent valve                     | Vents and closes EVAP system. When ECM turns valve ON, EVAP<br>system closed. When ECM turns valve OFF, EVAP system vented.<br>Negative pressure (vacuum) created in EVAP system to check for<br>EVAP leaks by closing purge VSV, turning vent valve ON (closed) and<br>operating leak detection pump.                                            |
| (b) Canister pressure sensor       | Indicates pressure as voltage. ECM supplies regulated 5 V to canister pressure sensor, and uses feedback from sensor to monitor EVAP system pressure.                                                                                                                                                                                             |
| (c) Leak detection pump            | Creates negative pressure (vacuum) in EVAP system for leak check.                                                                                                                                                                                                                                                                                 |

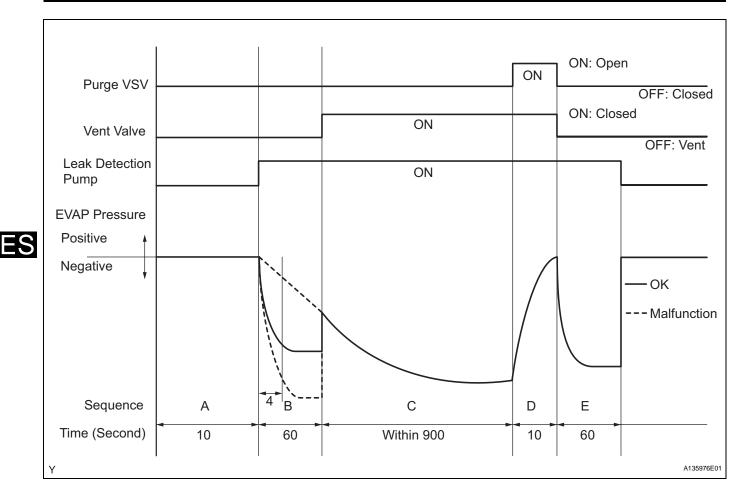
| Components            | Operations                                                                                                                                                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) Reference orifice | Has opening with 0.02 inch diameter. Vacuum produced through orifice by closing purge VSV, turning vent valve OFF and operating leak detection pump to monitor 0.02 inch leak criterion. 0.02 inch leak criterion indicates small leak of EVAP. |

## MONITOR DESCRIPTION


5 hours\* after the power switch is turned OFF, the leak detection pump creates negative pressure (vacuum) in the EVAP system. The ECM monitors for leaks and actuator malfunctions based on the EVAP pressure.

HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is S turned OFF, the monitor check starts 2.5 hours later.


| Sequence | Operations                                  | Descriptions                                                                                                                                                                                                                                                                                                                        | Duration     |
|----------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| -        | ECM activation                              | Activated by soak timer 5, 7 or 9.5 hours after power switch OFF.                                                                                                                                                                                                                                                                   | -            |
| A        | Atmospheric pressure<br>measurement         | Vent valve turned OFF (vent) and<br>EVAP system pressure measured<br>by ECM in order to register<br>atmospheric pressure.<br>If pressure in EVAP system not<br>between 70 kPa and 110 kPa<br>(525 mmHg and 825 mmHg),<br>ECM cancels EVAP system<br>monitor.                                                                        | 10 seconds   |
| В        | First 0.02 inch leak criterion measurement  | In order to determine 0.02 inch<br>leak criterion, leak detection<br>pump creates negative pressure<br>(vacuum) through reference<br>orifice and then ECM checks if<br>leak detection pump and vent<br>valve operate normally.                                                                                                      | 60 seconds   |
| С        | EVAP system pressure<br>measurement         | Vent valve turned ON (closed) to<br>shut EVAP system.<br>Negative pressure (vacuum)<br>created in EVAP system, and<br>EVAP system pressure then<br>measured.<br>Write down measured value as it<br>will be used in leak check.<br>If EVAP pressure does not<br>stabilize within 900 seconds,<br>ECM cancels EVAP system<br>monitor. | 900 seconds* |
| D        | Purge VSV monitor                           | Purge VSV opened and then<br>EVAP system pressure measured<br>by ECM.<br>Large increase indicates normal.                                                                                                                                                                                                                           | 10 seconds   |
| E        | Second 0.02 inch leak criterion measurement | After second 0.02 inch leak<br>criterion measurement, leak<br>check performed by comparing<br>first and second 0.02 inch leak<br>criterion.<br>If stabilized system pressure<br>higher than second 0.02 inch leak<br>criterion, ECM determines that<br>EVAP system leaking.                                                         | 60 seconds   |
| -        | Final check                                 | Atmospheric pressure measured<br>and then monitoring result<br>recorded by ECM.                                                                                                                                                                                                                                                     | -            |

\*: If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.



In sequences B and E, the leak detection pump creates negative pressure (vacuum) through the reference orifice. If the pressure is lower than 724 mmHg-a, higher than 752 mmHg-a, is not saturated and the pressure difference at sequences B and E is large, the ECM interprets this as a clog malfunction in the reference orifice, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC (2 trip detection logic).

These values vary with atmospheric pressure. Atmospheric pressure = 760 mmHg-a = 101.3 kPa



## **MONITOR STRATEGY**

| Required Sensors/Components | Purge VSV and canister pump module |
|-----------------------------|------------------------------------|
| Frequency of Operation      | Once per driving cycle             |
| Duration                    | Maximum 15 seconds                 |
| MIL Operation               | 2 driving cycles                   |
| Sequence of Operation       | None                               |

## **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever these DTCs are not present | P0011, P0012, P0021, P0022 (VVT system-Advance, Retard)<br>P0100, P0101, P0102, P0103 (MAF sensor)<br>P0110, P0112, P0113 (IAT sensor)<br>P0115, P0116, P0117, P0118 (ECT sensor)<br>P0120, P0122, P0123, P0220, P0222, P0223, P2135,(TP sensor)<br>P0125 (Insufficient ECT for closed loop)<br>P0171, P0172, P0174, P0175 (Fuel system)<br>P0300, P0301, P0302, P0303, P0304 (Misfire)<br>P0335 (CKP sensor)<br>P0340, P0341 (CMP sensor)<br>P0351, P0352, P0353, P0354 (Igniter)<br>P0450, P0452, P0453 (EVAP press sensor)<br>P0500 (VSS) |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atmospheric pressure                                     | 70 to 110 kPa (525 to 825 mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Battery voltage                                          | 10.5 V or higher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vehicle speed                                            | Less than 4 km/h (2.5 mph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Power switch                                             | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Time after key off                                       | 5 or 7 or 9.5 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Purge VSV                                                       | Not operated by scan tool |
|-----------------------------------------------------------------|---------------------------|
| Vent valve                                                      | Not operated by scan tool |
| Leak detection pump                                             | Not operated by scan tool |
| Both of the following conditions 1 and 2 are met before key off | -                         |
| 1. Duration that vehicle has been driven                        | 5 minutes or more         |
| 2. EVAP purge operation                                         | Performed                 |
| ECT                                                             | 4.4 to 35°C (40 to 95°F)  |
| IAT                                                             | 4.4 to 35°C (40 to 95°F)  |

## 1. Key-off monitor sequence 1 to 8

#### 1. Atmospheric pressure measurement

| Next sequence is run if the following condition is met | -                                      |
|--------------------------------------------------------|----------------------------------------|
| Atmospheric pressure change                            | Within 0.3 kPa (2.25 mmHg) in 1 second |

#### 2. First reference pressure measurement

| Next sequence is run if the following conditions are met      | -                                    |
|---------------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement start | -1 kPa (-7.5 mmHg) or lower          |
| Reference pressure                                            | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                            | Saturated within 60 seconds          |

#### 3. Vent valve stuck closed check

| Next sequence is run if the following condition is met | -                           |
|--------------------------------------------------------|-----------------------------|
| EVAP pressure change after vent valve is ON            | 0.3 kPa (2.25 mmHg) or more |

#### 4. Vacuum introduction

| Next sequence is run if the following condition is met | -                            |
|--------------------------------------------------------|------------------------------|
| EVAP pressure                                          | Saturated within 900 seconds |

#### 5. Purge VSV stuck closed check

| Next sequence is run if the following condition is met | -                           |
|--------------------------------------------------------|-----------------------------|
| EVAP pressure change after purge VSV is open           | 0.3 kPa (2.25 mmHg) or more |

#### 6. Second reference pressure measurement

| Next sequence is run if the following conditions are met | -                                    |
|----------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement  | -1 kPa (-7.5 mmHg) or lower          |
| Reference pressure                                       | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                       | Saturated within 60 seconds          |
| Reference pressure difference between first and second   | Less than 0.7 kPa (5.25 mmHg)        |

#### 7. Leak check

| Next sequence is run if the following condition is met | -                                    |
|--------------------------------------------------------|--------------------------------------|
| EVAP pressure when vacuum introduction is complete     | Lower than second reference pressure |

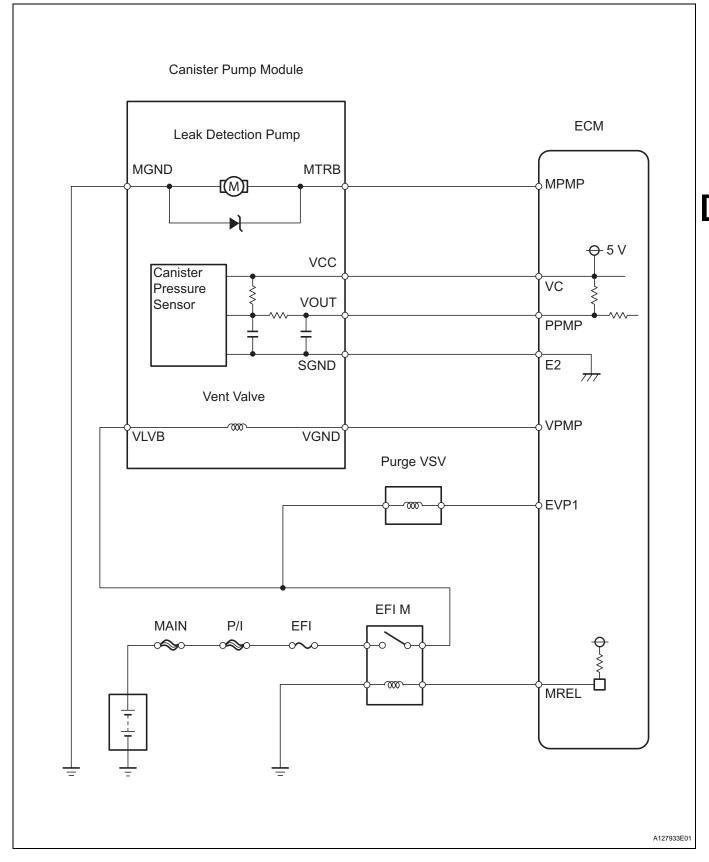
#### 8. Atmospheric pressure measurement

| EVAP monitor is complete if the following condition is met | -                          |
|------------------------------------------------------------|----------------------------|
| Atmospheric pressure difference between sequence 1 and 8   | Within 0.3 kPa (2.25 mmHg) |

## **TYPICAL MALFUNCTION THRESHOLDS**

"Saturated" indicates that the EVAP pressure change is less than 0.1 kPa (0.75 mmHg) in 30 seconds.

| One of following conditions met                          | -                              |
|----------------------------------------------------------|--------------------------------|
| FTP when just after reference pressure measurement began | Higher than -1 kPa (755 mmHg)  |
| Reference pressure                                       | Less than -4.85 kPa (726 mmHg) |
| Reference pressure                                       | -1.05 kPa (754 mmHg) or higher |
| Reference pressure                                       | Not saturated                  |


Reference pressure difference between first and second

0.7 kPa (5.25 mmHg) or more

## **MONITOR RESULT**

Refer to CHECKING MONITOR STATUS (see page ES-15).

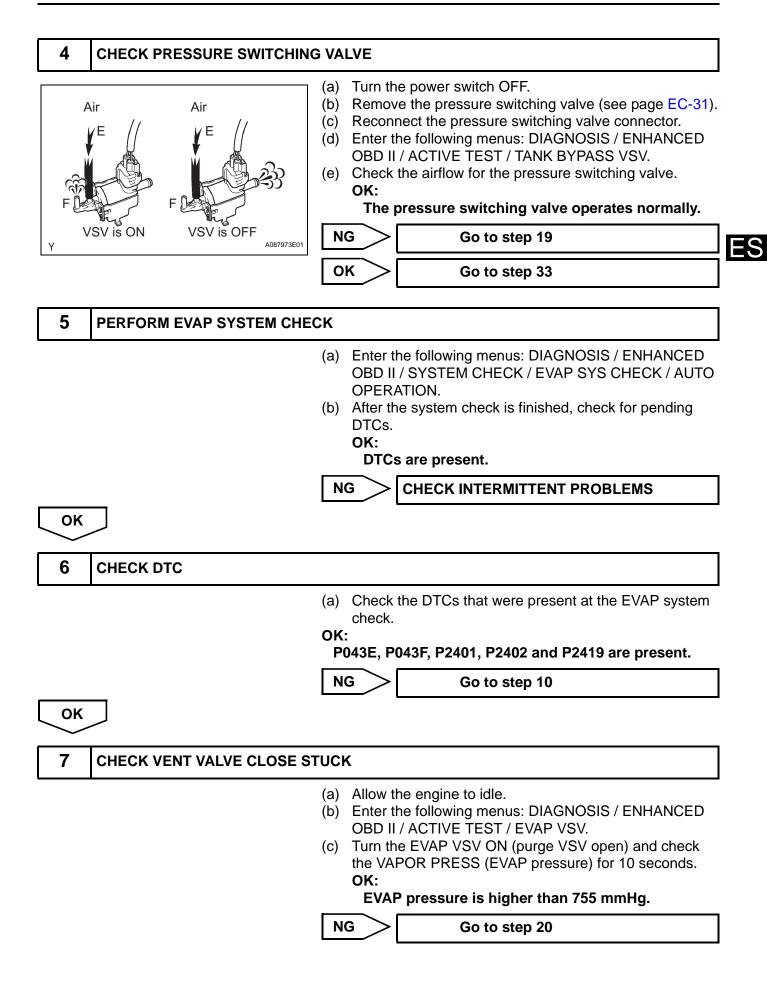
## WIRING DIAGRAM

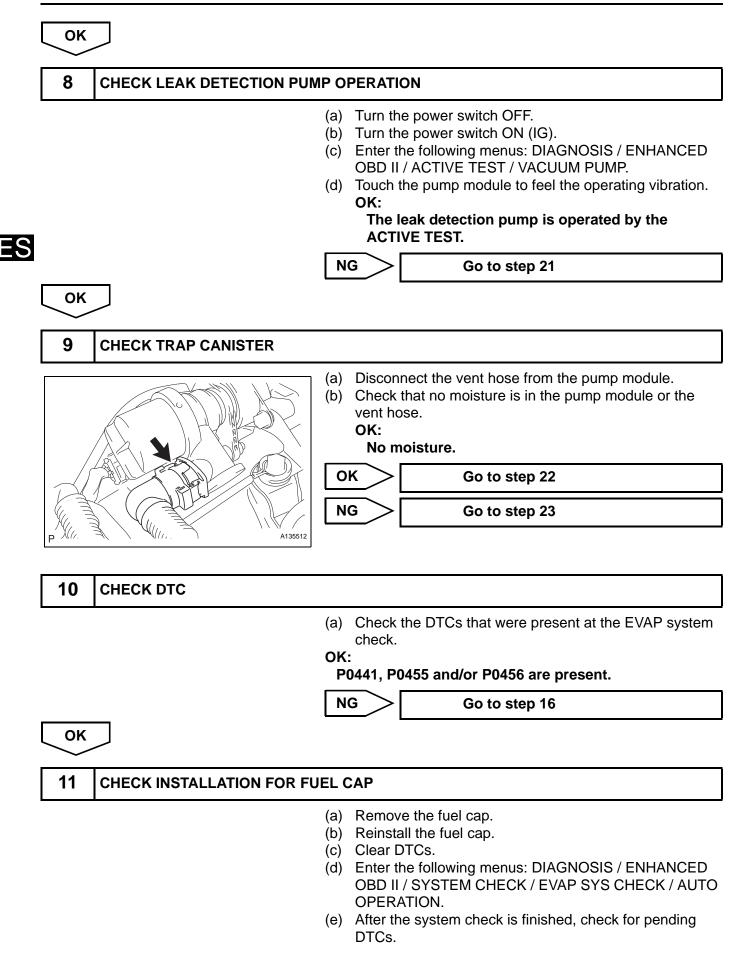


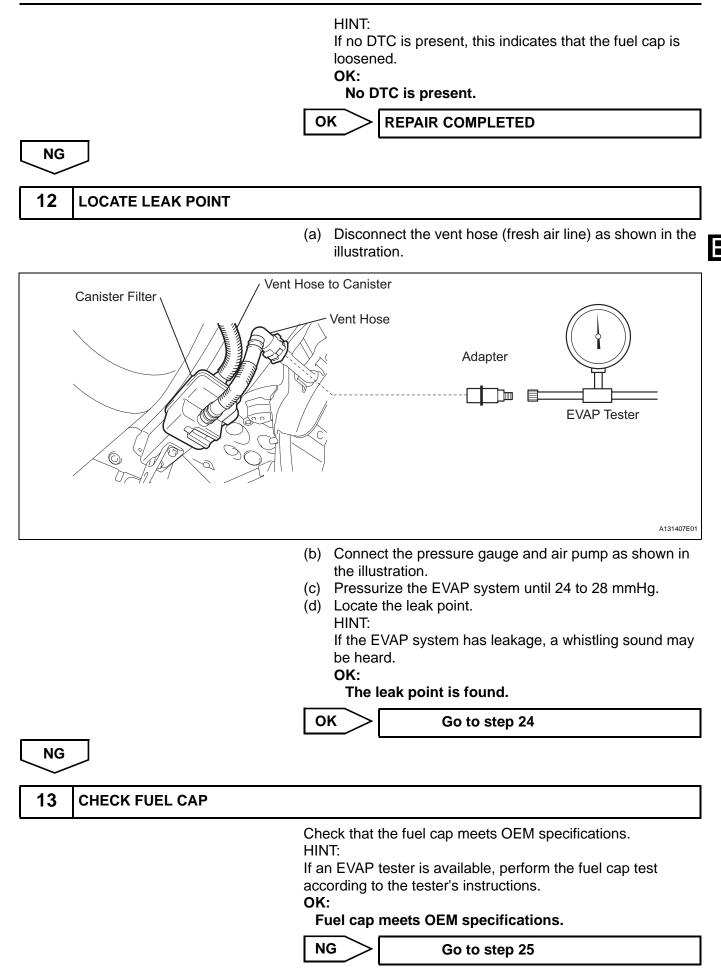
## **INSPECTION PROCEDURE**

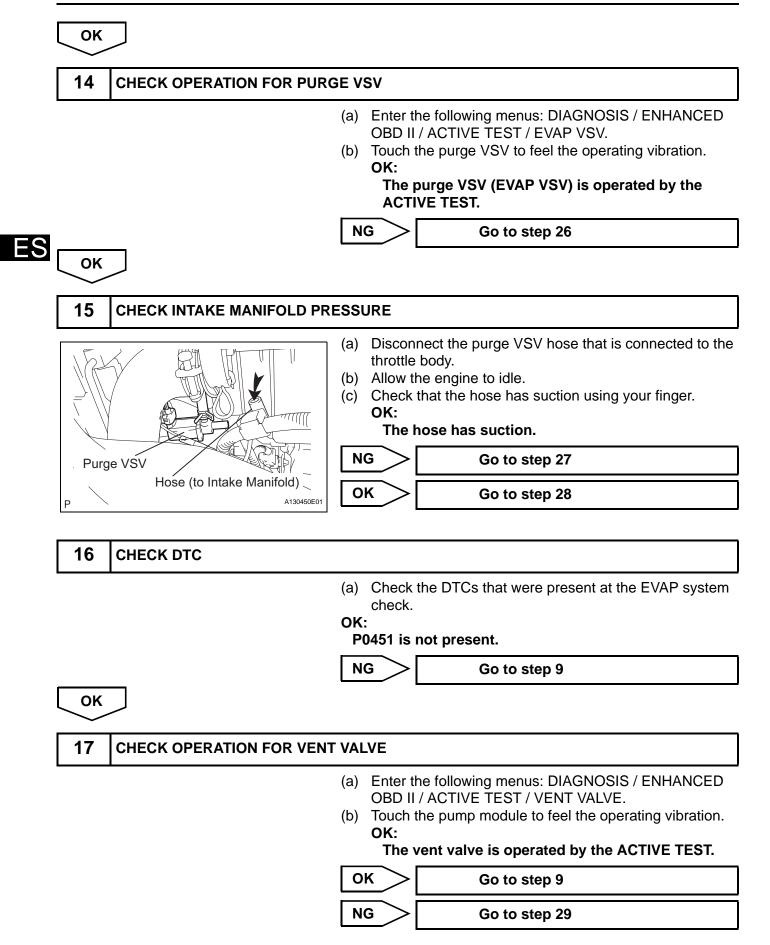
NOTICE:

The intelligent tester is required to conduct the following diagnostic troubleshooting procedure.


ES

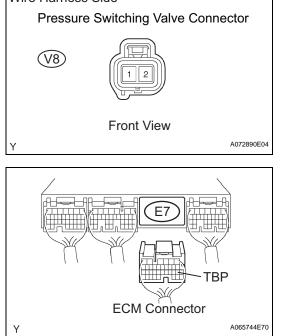

#### HINT:


- Using the intelligent tester monitor results enable the EVAP system to be confirmed.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine conditions when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.


|            | ONFIRM DTC              |                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |
|------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                         | <ul> <li>(b) Turn the point</li> <li>(c) Turn the point</li> <li>(d) Connect the</li> <li>(e) Turn the point</li> <li>(f) Enter the for</li> <li>OBD II / DT</li> </ul> | wer switch OFF and wait for 10 seconds.<br>wer switch ON (IG).<br>wer switch OFF and wait for 10 seconds.<br>e intelligent tester to the DLC3.<br>wer switch ON (IG).<br>ollowing menus: DIAGNOSIS / ENHANCED<br>TC INFO / CURRENT CODES.<br>TC P0446 is output. |
|            |                         |                                                                                                                                                                         | Go to step 5                                                                                                                                                                                                                                                     |
| YES        |                         |                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |
| 2 PE       | ERFORM EVAP SYSTEM CHEC | СК                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |
|            |                         | <ul> <li>(b) Clear DTCs</li> <li>(c) Enter the for</li> <li>OBD II / SY</li> <li>OPERATIC</li> <li>(d) After the sy</li> <li>DTCs.</li> <li>OK:</li> </ul>              | Ilowing menus: DIAGNOSIS / ENHANCED<br>STEM CHECK / EVAP SYS CHECK / AUT                                                                                                                                                                                         |
|            |                         |                                                                                                                                                                         | •                                                                                                                                                                                                                                                                |
|            |                         | NG                                                                                                                                                                      | Go to step 6                                                                                                                                                                                                                                                     |
| ОК<br>3 Сн | HECK OPERATION FOR PRES | (a) Enter the for<br>OBD II / AC<br>(b) Touch the p<br>VSV) to fee<br>OK:                                                                                               | NG VALVE                                                                                                                                                                                                                                                         |
|            | HECK OPERATION FOR PRES | (a) Enter the for<br>OBD II / AC<br>(b) Touch the p<br>VSV) to fee<br>OK:                                                                                               | NG VALVE<br>ollowing menus: DIAGNOSIS / ENHANCED<br>CTIVE TEST / TANK BYPASS VSV.<br>oressure switching valve (TANK BYPASS<br>of the operating vibration.<br>sure switching valve is operated by the                                                             |












## CHECK HARNESS AND CONNECTOR (PRESSURE SWITCHING VALVE - ECM AND EFI M RELAY) (a) Check the harness and the connectors between the Wire Harness Side

connector.



18

| (2)<br>(3)             | Disconnect the E7 E0<br>Measure the resistand<br>side connectors.<br><b>Standard resistance</b> | ce between the wire harness |  |
|------------------------|-------------------------------------------------------------------------------------------------|-----------------------------|--|
| Tester Co              | Tester Connection Specified Condition                                                           |                             |  |
| V8-1 (Pres<br>18 (TBP) | ssure switching valve) - E7-                                                                    | Below 1 $\Omega$            |  |

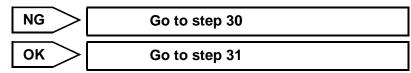
pressure switching valve and the ECM.

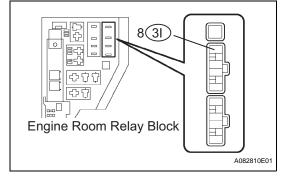
(1) Disconnect the V8 pressure switching valve

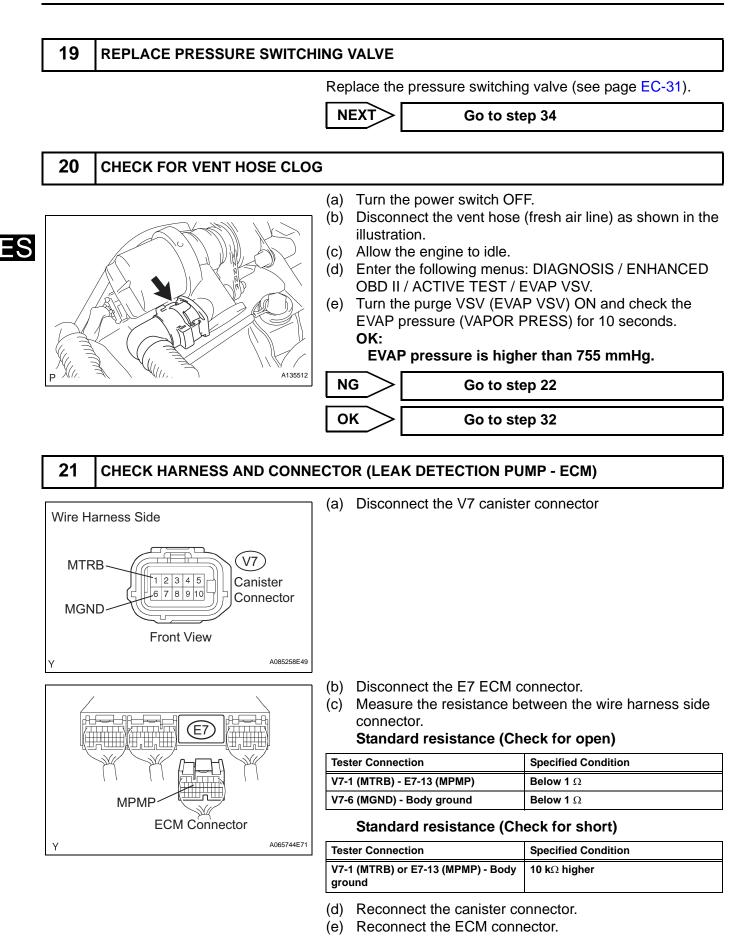
#### Standard resistance (Check for short)

| Tester Connection                                               | Specified Condition  |
|-----------------------------------------------------------------|----------------------|
| V8-1 (Pressure switching valve) or<br>E7-18 (TBP) - Body ground | 10 k $\Omega$ higher |

- (4) Reconnect the pressure switching valve connector.
- (5) Reconnect the ECM connector.
- (b) Check the harness and the connectors between the pressure switching valve and the EFI M relay.
  - (1) Disconnect the V8 pressure switching valve connector.
  - (2) Remove the integration relay from the engine room relay block.
  - (3) Measure the resistance between the wire harness side connector.


#### Standard resistance (Check for open)


| [ | Tester Connection                                       | Specified Condition |
|---|---------------------------------------------------------|---------------------|
| Ī | V8-2 (Pressure switching valve) - 3I-8<br>(EFI M relay) | Below 1 Ω           |


#### Standard resistance (Check for short)

| Tester Connection                                                       | Specified Condition     |
|-------------------------------------------------------------------------|-------------------------|
| V8-2 (Pressure switching valve) or 3I-<br>8 (EFI M relay) - Body ground | 10 k $\Omega$ or higher |

- (4) Reconnect the pressure switching valve connector.
- (5) Reinstall the integration relay.

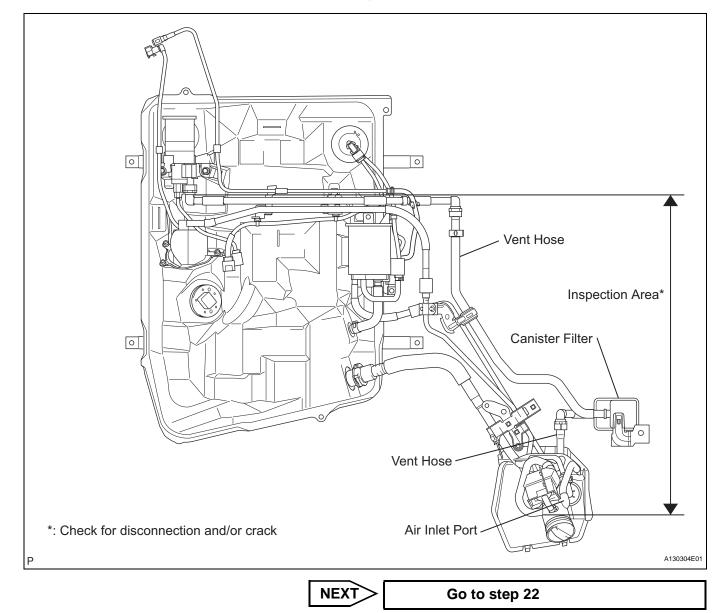




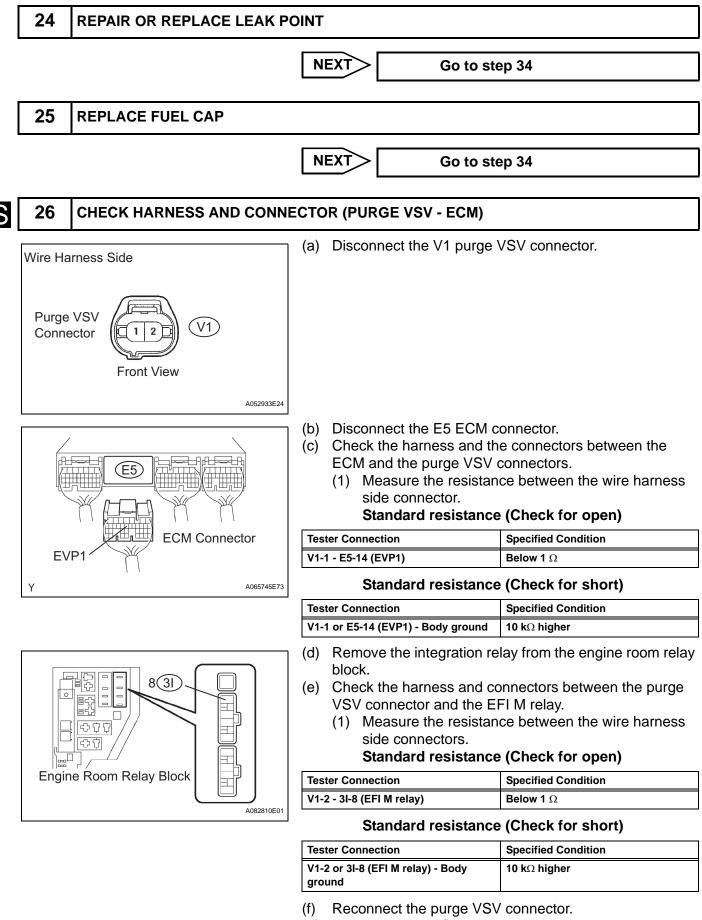




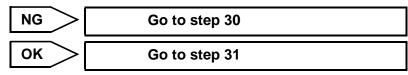
#### **22** REPLACE TRAP CANISTER WITH PUMP MODULE


Replace the trap canister with pump module (see page EC-17).

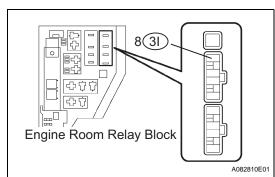
NEXT


Go to step 34

## **23** CHECK FOR VENT HOSE DAMAGE


Check for hose damage as shown in the illustration. If necessary, replace the vent hose.




ES



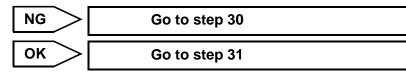
(g) Reconnect the ECM connector.



#### 27 **REPLACE HOSE (PURGE VSV - THROTTLE BODY)** NEXT Go to step 34 28 **REPLACE PURGE VSV** Replace the purge VSV (see page EC-23). NEXT Go to step 34 29 CHECK HARNESS AND CONNECTOR (VENT VALVE - ECM) (a) Disconnect the V7 canister connector. Wire Harness Side VLVB (V7 Canister 1 2 3 4 5 Connector 6 7 8 9 10 VGND Front View A085258E50 Disconnect the E7 ECM connector. (b) (c) Check the harness and the connectors between the ECM and the canister connectors. E7 (1) Measure the resistance between the wire harness side connector. Standard resistance (Check for open) **Tester Connection Specified Condition** VPMP V7-8 (VGND) - E7-26 (VPMP) Below 1 $\Omega$ ECM Connector Standard resistance (Check for short) A065744E72 **Tester Connection Specified Condition** V7-8 (VGND) or E7-26 (VPMP) - Body 10 k $\Omega$ higher ground



- (d) Remove the integration relay from the engine room relay block.
- (e) Check the harness and connectors between the canister connector and the EFI M relay.
  - (1) Measure the resistance between the wire harness side connectors.


#### Standard resistance (Check for open)

| Tester Connection                | Specified Condition |
|----------------------------------|---------------------|
| V7-9 (VLVB) - 3I-8 (EFI M relay) | Below 1 Ω           |

#### Standard resistance (Check for short)

| Tester Connection                                  | Specified Condition  |
|----------------------------------------------------|----------------------|
| V7-9 (VLVB) or 3I-8 (EFI M relay) -<br>Body ground | 10 k $\Omega$ higher |

- (f) Reconnect the canister connector.
- (g) Reconnect the ECM connector.
- (h) Reinstall the integration relay.



#### **30** REPAIR OR REPLACE HARNESS AND CONNECTOR

NEXT

Go to step 34

31 REPLACE ECM

Replace the ECM (see page ES-469).

NEXT

Go to step 34

#### **32** CHECK AND REPLACE VENT HOSE OR CANISTER FILTER

NEXT

Go to step 34

#### **33** REPLACE HOSE (PRESSURE SWITCHING VALVE AND FUEL TANK)

| NEXT |                           |                                                                                                  |  |
|------|---------------------------|--------------------------------------------------------------------------------------------------|--|
| 34   | PERFORM EVAP SYSTEM CHECK |                                                                                                  |  |
|      | (a)                       | Turn the power switch ON (IG).                                                                   |  |
|      | (b)                       | Enter the following menus: DIAGNOSIS / ENHANCED<br>OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO |  |

OPERATION.(c) After the system check is finished, check for pending DTCs.





P0441

## Evaporative Emission Control System Incorrect Purge Flow

## DTC SUMMARY

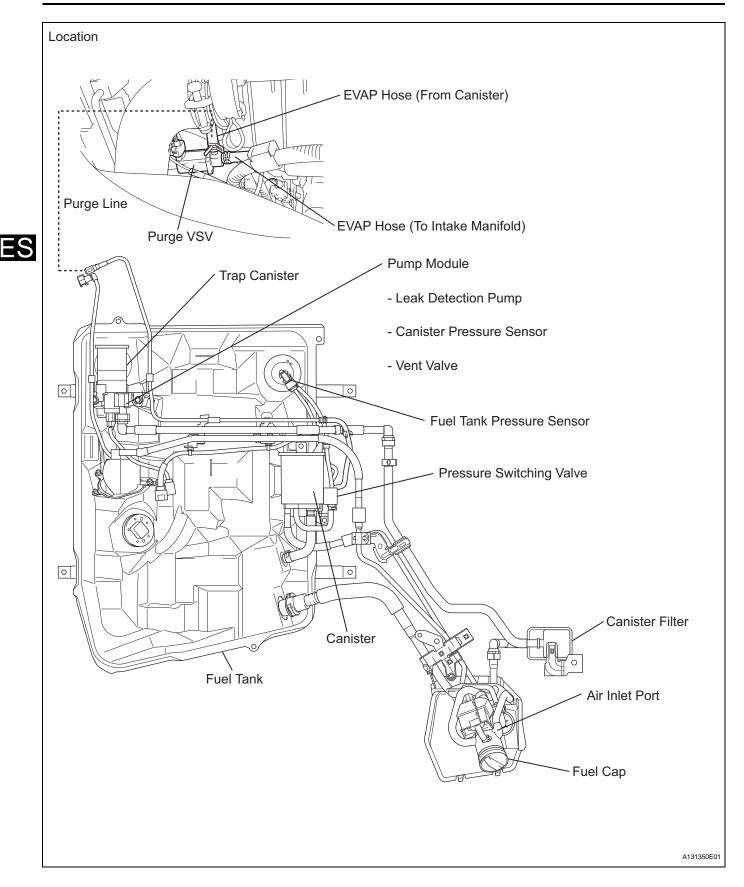
| DTC No. | Monitoring Items                                    | Malfunction<br>Detection<br>Conditions                                                                                                                                                                                                                                                                                                               | Trouble Areas                                                                                                                                                                      | Detection Timing          | Detection Logic |
|---------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
| P0441   | Purge Vacuum<br>Switching Valve<br>(VSV) stuck open | Leak detection pump<br>creates negative<br>pressure (vacuum) in<br>EVAP system and<br>EVAP system<br>pressure measured.<br>0.02 inch leak<br>criterion measured at<br>start and at end of<br>leak check.<br>If stabilized pressure<br>higher than [second<br>0.02 inch leak<br>criterion x 0.15], ECM<br>determines that<br>purge VSV stuck<br>open. | <ul> <li>Purge VSV</li> <li>Connector/wire harness (purge VSV - ECM)</li> <li>ECM</li> <li>Canister pump module</li> <li>Leakage from EVAP system</li> </ul>                       | While power switch<br>OFF | 2 trip          |
| P0441   | Purge VSV stuck<br>closed                           | After EVAP leak<br>check performed,<br>purge VSV turned<br>ON (open), and<br>atmospheric air<br>introduced into EVAP<br>system. 0.02 inch<br>leak criterion<br>measured at start<br>and at end of leak<br>check.<br>If pressure does not<br>return to near<br>atmospheric<br>pressure, ECM<br>determines that<br>purge VSV stuck<br>closed.          | <ul> <li>Purge VSV</li> <li>Connector/wire harness (purge VSV - ECM)</li> <li>ECM</li> <li>Canister pump module</li> <li>Leakage from EVAP system</li> </ul>                       | While power switch<br>OFF | 2 trip          |
| P0441   | Purge flow                                          | <ul> <li>While engine running, following conditions are met:</li> <li>Negative pressure not created in EVAP system when purge VSV turned ON (open)</li> <li>Atmospheric pressure change before and after purge flow monitor less than 0.93 kPa (7 mmHg)</li> </ul>                                                                                   | <ul> <li>Purge VSV</li> <li>Connector/wire<br/>harness<br/>(purge VSV -<br/>ECM)</li> <li>Leakage from<br/>EVAP line<br/>(purge VSV -<br/>Intake manifold)</li> <li>ECM</li> </ul> | While engine running      | 2 trip          |

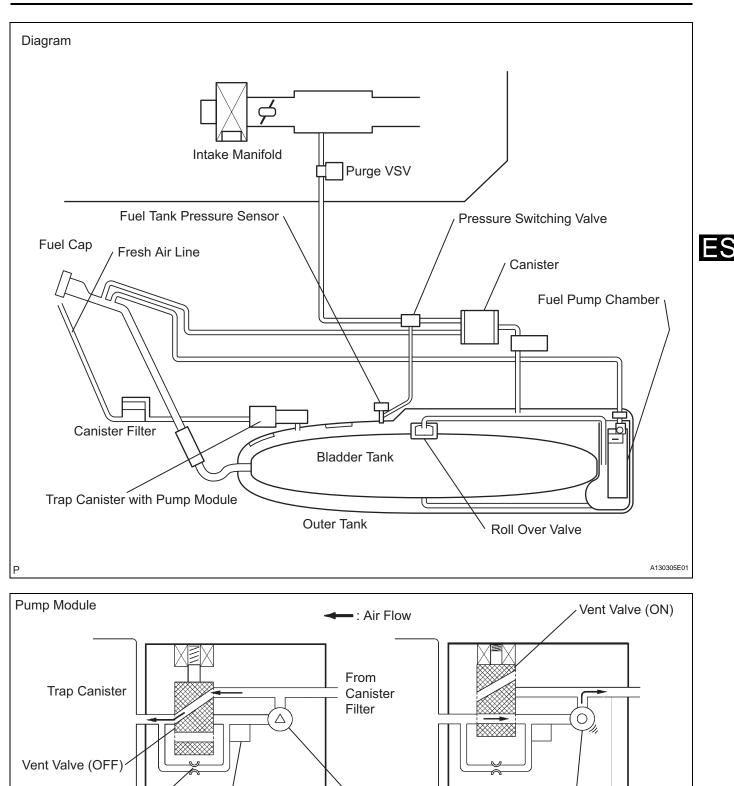
ES

## DESCRIPTION NOTICE:

# In this vehicle's EVAP system, turning ON the vent valve does not seal off the EVAP system. To check for leaks in the EVAP system, disconnect the air inlet vent hose and apply pressure from the atmosphere side of the canister.

While the engine is running, if a predetermined condition (closed loop, etc.) is met, the purge VSV is opened by the ECM and stored fuel vapors in the canister are purged to the intake manifold. The ECM changes the duty cycle ratio of the purge VSV to control purge flow volume.


The purge flow volume is also determined by the intake manifold pressure. Atmospheric pressure is allowed into the canister through the vent valve to ensure that the purge flow is maintained when the negative pressure (vacuum) is applied to the canister.


#### Key-off monitor

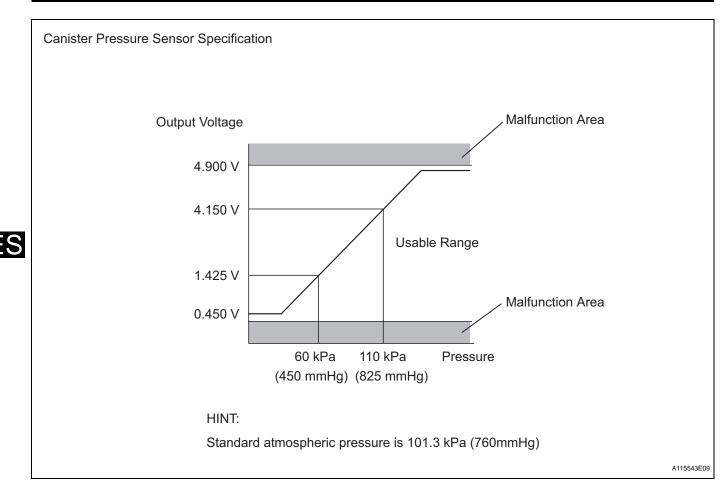
This monitor checks for Evaporative Emission (EVAP) system leaks and canister pump module malfunctions. The monitor starts 5 hours\* after the power switch is turned OFF. More than 5 hours are required to allow the fuel to cool down to stabilize the Fuel Tank Pressure (FTP), thus making the EVAP system monitor more accurate.

The leak detection pump creates negative pressure (vacuum) in the EVAP system and the pressure is measured. Finally, the ECM monitors for leaks from the EVAP system and malfunctions in both the canister pump module and purge VSV, based on the EVAP pressure. HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.






Leak Detection Pump (OFF)

**Reference Orifice** 

Pressure Sensor

A131438E01

Leak Detection Pump (ON)

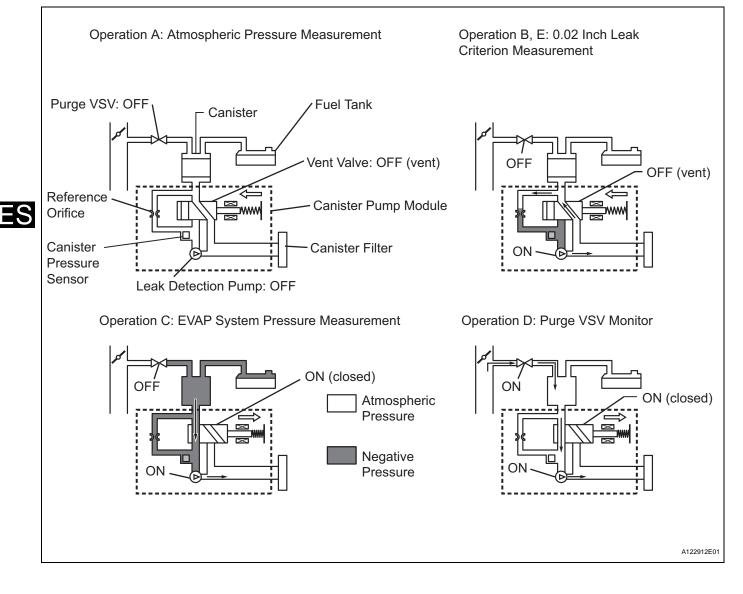


| Components                         | Operations                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canister, Trap canister            | Contains activated charcoal to absorb EVAP generated in fuel tank.                                                                                                                                                                                                                                                                                |
| Cut-off valve                      | Located in fuel tank. Valve floats and closes when fuel tank 100% full.                                                                                                                                                                                                                                                                           |
| Purge Vacuum Switching Valve (VSV) | Opens or closes line between canister and intake manifold. ECM uses<br>purge VSV to control EVAP purge flow. In order to discharge EVAP<br>absorbed by canister to intake manifold, ECM opens purge VSV.<br>EVAP discharge volume to intake manifold controlled by purge VSV<br>duty cycle ratio (current-carrying time) (open: ON; closed: OFF). |
| Roll-over valve                    | Located in fuel tank. Valve closes by its own weight when vehicle overturns to prevent fuel from spilling out.                                                                                                                                                                                                                                    |
| Soak timer                         | Built into ECM. To ensure accurate EVAP monitor, measures 5 hours (+-15 min) after power switch OFF. This allows fuel to cool down, stabilizing Fuel Tank Pressure (FTP). When approximately 5 hours elapsed, ECM activates.                                                                                                                      |
| Pressure switching valve           | The pressure switching valve located on the canister is used to detect<br>leakage from the bladder tank into the fuel tank. The valve opens<br>during the bladder tank leak check. Then, the fuel tank's fuel vapor<br>flows to the intake manifold without passing the canister.                                                                 |
| Pump module                        | Consists of (a) to (d) below. Pump module cannot be disassembled.                                                                                                                                                                                                                                                                                 |
| (a) Vent valve                     | Vents and closes EVAP system. When ECM turns valve ON, EVAP<br>system closed. When ECM turns valve OFF, EVAP system vented.<br>Negative pressure (vacuum) created in EVAP system to check for<br>EVAP leaks by closing purge VSV, turning vent valve ON (closed) and<br>operating leak detection pump (refer to fig. 1).                          |
| (b) Canister pressure sensor       | Indicates pressure as voltage. ECM supplies regulated 5 V to canister pressure sensor, and uses feedback from sensor to monitor EVAP system pressure (refer to fig. 2).                                                                                                                                                                           |
| (c) Leak detection pump            | Creates negative pressure (vacuum) in EVAP system for leak check.                                                                                                                                                                                                                                                                                 |

| Components            | Operations                                                                                                                                                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) Reference orifice | Has opening with 0.02 inch diameter. Vacuum produced through orifice by closing purge VSV, turning vent valve OFF and operating leak detection pump to monitor 0.02 inch leak criterion. 0.02 inch leak criterion indicates small leak of EVAP. |

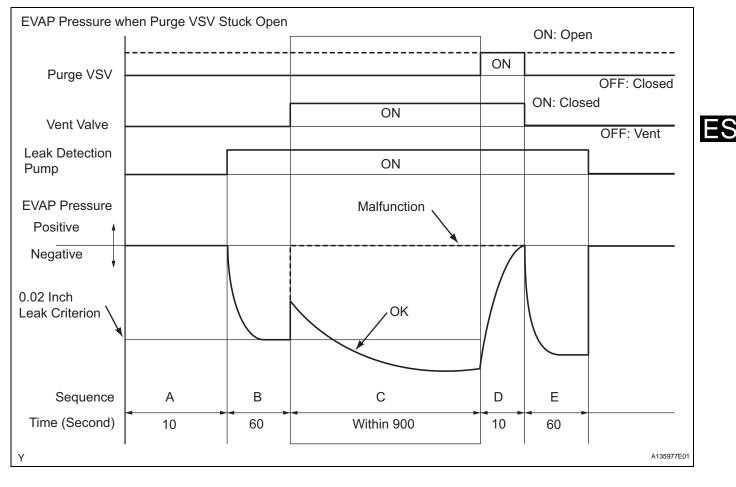
#### MONITOR DESCRIPTION

1. Key-off monitor


5 hours\* after the power switch is turned OFF, the leak detection pump creates negative pressure (vacuum) in the EVAP system. The ECM monitors for leaks and actuator malfunctions based on the EVAP pressure.

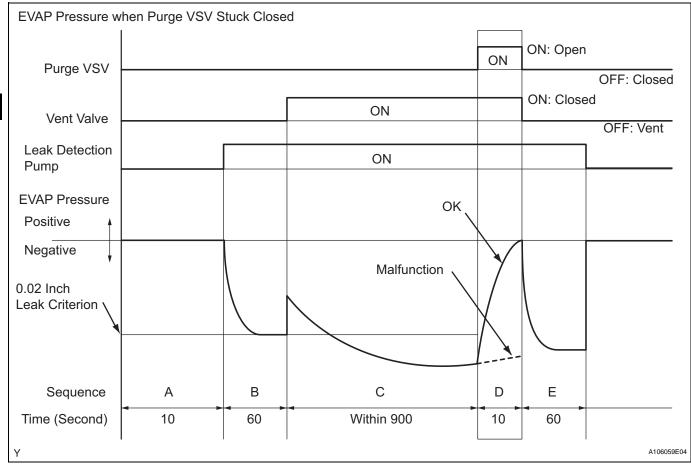
HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.


| Sequence | Operations                                  | Descriptions                                                                                                                                                                                                                                                                                                                        | Duration     |
|----------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| -        | ECM activation                              | Activated by soak timer 5, 7 or 9.5 hours after power switch OFF.                                                                                                                                                                                                                                                                   | -            |
| A        | Atmospheric pressure<br>measurement         | Vent valve turned OFF (vent) and<br>EVAP system pressure measured<br>by ECM in order to register<br>atmospheric pressure.<br>If pressure in EVAP system not<br>between 70 kPa and 110 kPa<br>(525 mmHg and 825 mmHg),<br>ECM cancels EVAP system<br>monitor.                                                                        | 10 seconds   |
| В        | First 0.02 inch leak criterion measurement  | In order to determine 0.02 inch<br>leak criterion, leak detection<br>pump creates negative pressure<br>(vacuum) through reference<br>orifice and then ECM checks if<br>leak detection pump and vent<br>valve operate normally.                                                                                                      | 60 seconds   |
| С        | EVAP system pressure<br>measurement         | Vent valve turned ON (closed) to<br>shut EVAP system.<br>Negative pressure (vacuum)<br>created in EVAP system, and<br>EVAP system pressure then<br>measured.<br>Write down measured value as it<br>will be used in leak check.<br>If EVAP pressure does not<br>stabilize within 900 seconds,<br>ECM cancels EVAP system<br>monitor. | 900 seconds* |
| D        | Purge VSV monitor                           | Purge VSV opened and then<br>EVAP system pressure measured<br>by ECM.<br>Large increase indicates normal.                                                                                                                                                                                                                           | 10 seconds   |
| E        | Second 0.02 inch leak criterion measurement | After second 0.02 inch leak<br>criterion measurement, leak<br>check performed by comparing<br>first and second 0.02 inch leak<br>criterion.<br>If stabilized system pressure<br>higher than second 0.02 inch leak<br>criterion, ECM determines that<br>EVAP system leaking.                                                         | 60 seconds   |
| -        | Final check                                 | Atmospheric pressure measured<br>and then monitoring result<br>recorded by ECM.                                                                                                                                                                                                                                                     | -            |

#### \*: If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.




#### (a) Purge VSV stuck open

In operation C, the leak detection pump creates negative pressure (vacuum) in the EVAP system. The EVAP system pressure is then measured by the ECM using the canister pressure sensor. If the stabilized system pressure is higher than [second 0.02 inch leak criterion x 0.15], the ECM interprets this as the purge Vacuum Switching Valve (VSV) being stuck open. The ECM illuminates the MIL and sets the DTC (2 trip detection logic).



#### (b)Purge VSV stuck closed

In operation D, the canister pressure sensor measures the EVAP system pressure. The pressure measurement for the purge VSV monitor begins when the purge VSV is turned ON (open) after the EVAP leak check. When the measured pressure indicates an increase of 0.3 kPa (2.25 mmHg) or more, the purge VSV is functioning normally. If the pressure does not increase, the ECM interprets this as the purge VSV being stuck closed. The ECM illuminates the MIL and sets the DTC (2 trip detection logic).



#### (c) Purge flow

While the engine running, the purge VSV opens to purge the fuel vapor according to the engine condition. The ECM check the EVAP pressure when the purge VSV opens. If the pressure dose not change, the ECM interprets this as a malfunction. The ECM illuminates the MIL and sets DTC (2 trip detection logic).

#### **MONITOR STRATEGY**

| Related DTCs                | P0441: Purge VSV stuck open<br>P0441: Purge VSV stuck closed<br>P0441: Purge flow |
|-----------------------------|-----------------------------------------------------------------------------------|
| Required Sensors/Components | Purge VSV and canister pump module                                                |
| Frequency of Operation      | Once per driving cycle                                                            |
| Duration                    | Maximum 15 seconds                                                                |
| MIL Operation               | 2 driving cycles                                                                  |
| Sequence of Operation       | None                                                                              |

#### TYPICAL ENABLING CONDITIONS Purge Flow Monitor:

| Monitor runs whenever following DTC not present | - |  |
|-------------------------------------------------|---|--|

| Engine                                          | Running                   |
|-------------------------------------------------|---------------------------|
| ECT                                             | 4.4°C (40°F) or more      |
| IAT                                             | 4.4°C (40°F) or more      |
| EVAP control system pressure sensor malfunction | Not detected              |
| Purge VSV                                       | Not detected by scan tool |
| EVAP system check                               | Not detected by scan tool |
| Battery voltage                                 | 11 V or higher            |
| Purge duty cycle                                | 15% or more               |

#### Purge VSV Stuck:

| P0011, P0012, P0021, P0022 (VVT syst           P0100, P0101, P0102, P0103 (MAF sen           P0110, P0112, P0113 (IAT sensor)           P0115, P0116, P0117, P0118 (ECT sens           P0120, P0122, P0123, P0220, P0222, P           P0125 (Insufficient ECT for closed loop)           P0171, P0172, P0174, P0175 (Fuel syst | sor)<br>20223, P2135,(TP sensor) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| P0300, P0301, P0302, P0303, P0304 (M<br>P0335 (CKP sensor)<br>P0340, P0341 (CMP sensor)<br>P0351, P0352, P0353, P0354 (Igniter)<br>P0450, P0452, P0453 (EVAP press sens<br>P0500 (VSS)                                                                                                                                         | /isfire)                         |
| Atmospheric pressure 70 to 110 kPa (525 to 825 mmHg)                                                                                                                                                                                                                                                                           |                                  |
| Battery voltage 10.5 V or higher                                                                                                                                                                                                                                                                                               |                                  |
| Vehicle speed Less than 4 km/h (2.5 mph)                                                                                                                                                                                                                                                                                       |                                  |
| Power switch OFF                                                                                                                                                                                                                                                                                                               |                                  |
| Time after key off   5 or 7 or 9.5 hours                                                                                                                                                                                                                                                                                       |                                  |
| Purge VSV Not operated by scan tool                                                                                                                                                                                                                                                                                            |                                  |
| Vent valve Not operated by scan tool                                                                                                                                                                                                                                                                                           |                                  |
| Leak detection pump Not operated by scan tool                                                                                                                                                                                                                                                                                  |                                  |
| Both of the following conditions 1 and 2 are met before key off -                                                                                                                                                                                                                                                              |                                  |
| 1. Duration that vehicle has been driven         5 minutes or more                                                                                                                                                                                                                                                             |                                  |
| 2. EVAP purge operation Performed                                                                                                                                                                                                                                                                                              |                                  |
| ECT 4.4 to 35°C (40 to 95°F)                                                                                                                                                                                                                                                                                                   |                                  |
| IAT 4.4 to 35°C (40 to 95°F)                                                                                                                                                                                                                                                                                                   |                                  |

#### 1. Key-off monitor sequence 1 to 8

#### 1. Atmospheric pressure measurement

| Next sequence is run if the following condition is met | -                                      |
|--------------------------------------------------------|----------------------------------------|
| Atmospheric pressure change                            | Within 0.3 kPa (2.25 mmHg) in 1 second |

#### 2. First reference pressure measurement

| Next sequence is run if the following conditions are met      | -                                    |
|---------------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement start | -1 kPa (-7.5 mmHg) or lower          |
| Reference pressure                                            | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                            | Saturated within 60 seconds          |

#### 3. Vent valve stuck closed check

| Next sequence is run if the following condition is met | -                           |
|--------------------------------------------------------|-----------------------------|
| EVAP pressure change after vent valve is ON            | 0.3 kPa (2.25 mmHg) or more |

#### 4. Vacuum introduction

| Next sequence is run if the following condition is met | -                            |
|--------------------------------------------------------|------------------------------|
| EVAP pressure                                          | Saturated within 900 seconds |

#### 5. Purge VSV stuck closed check

| Next sequence is run if the following condition is met | -                           |
|--------------------------------------------------------|-----------------------------|
| EVAP pressure change after purge valve is open         | 0.3 kPa (2.25 mmHg) or more |

#### 6. Second reference pressure measurement

| Next sequence is run if the following conditions are met | -                                    |
|----------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement  | -1 kPa (-7.5 mmHg) or lower          |
| Reference pressure                                       | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                       | Saturated within 60 seconds          |
| Reference pressure difference between first and second   | Less than 0.7 kPa (5.25 mmHg)        |

#### 7. Leak check

ES

| Ne | ext sequence is run if the following condition is met | -                                    |
|----|-------------------------------------------------------|--------------------------------------|
| EV | AP pressure when vacuum introduction is complete      | Lower than second reference pressure |

#### 8. Atmospheric pressure measurement

| EVAP monitor is complete if the following condition is met | -                          |
|------------------------------------------------------------|----------------------------|
| Atmospheric pressure difference between sequence 1 and 8   | Within 0.3 kPa (2.25 mmHg) |

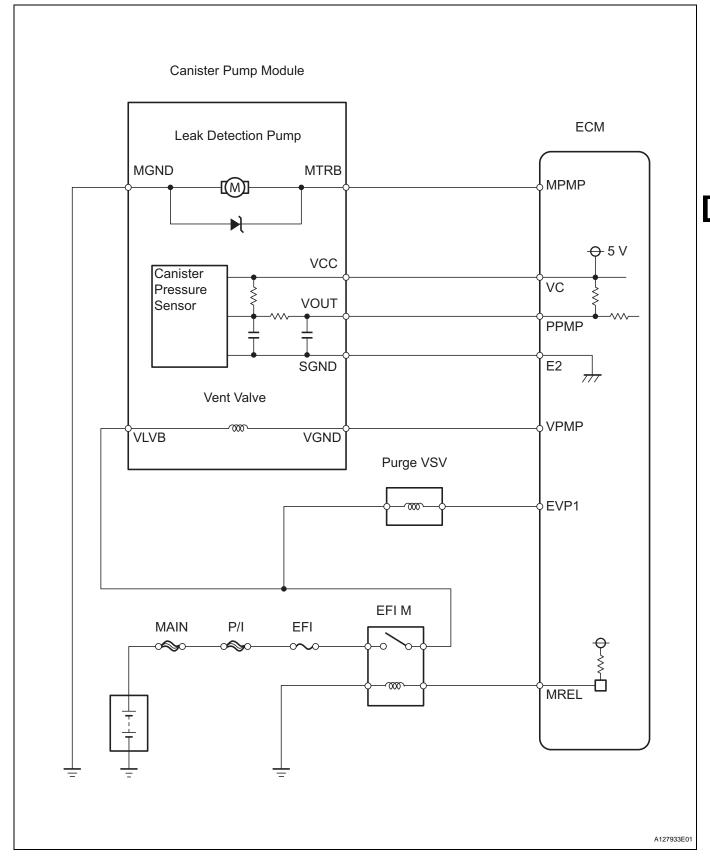
#### **TYPICAL MALFUNCTION THRESHOLDS**

"Saturated" indicates that the EVAP pressure change is less than 0.1 kPa (0.75 mmHg) in 30 seconds. **Purge Flow Monitor:** 

| EVAP pressure change when purge flow is started | Lower than 0.93 kPa (7 mmHg) |
|-------------------------------------------------|------------------------------|
|                                                 |                              |

#### Key-off Monitor: Purge VSV stuck open

|  | FTP when vacuum introduction complete | Higher than reference pressure x 0.15 |
|--|---------------------------------------|---------------------------------------|
|--|---------------------------------------|---------------------------------------|


#### Key-off Monitor: Purge VSV stuck closed

| FTP change after purge VSV ON (open) | Less than 0.3 kPa (2.25 mmHg) |
|--------------------------------------|-------------------------------|
|--------------------------------------|-------------------------------|

#### **MONITOR RESULT**

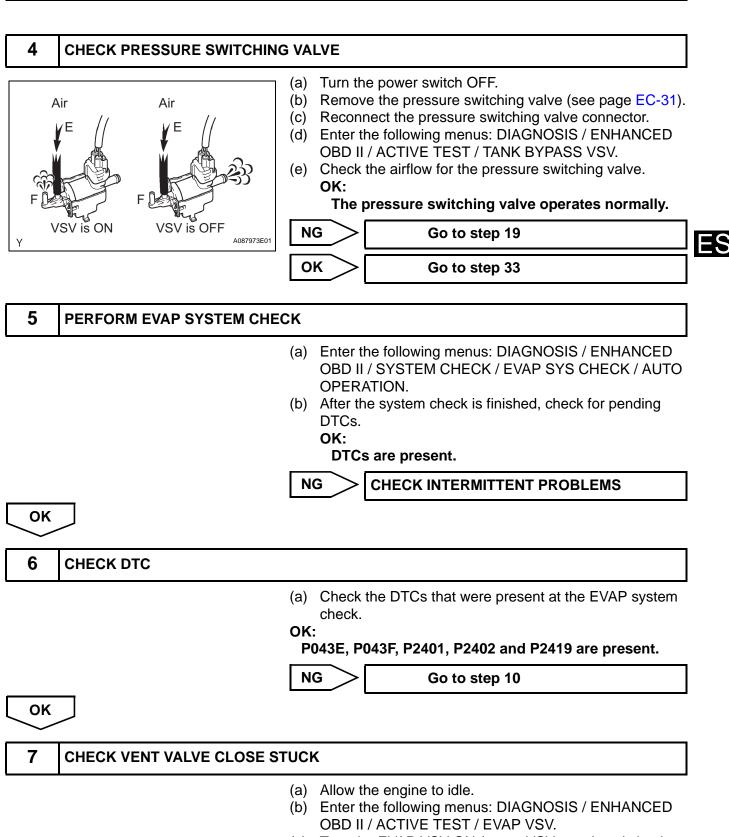
Refer to CHECKING MONITOR STATUS (see page ES-15).

#### WIRING DIAGRAM



#### **INSPECTION PROCEDURE**

NOTICE:

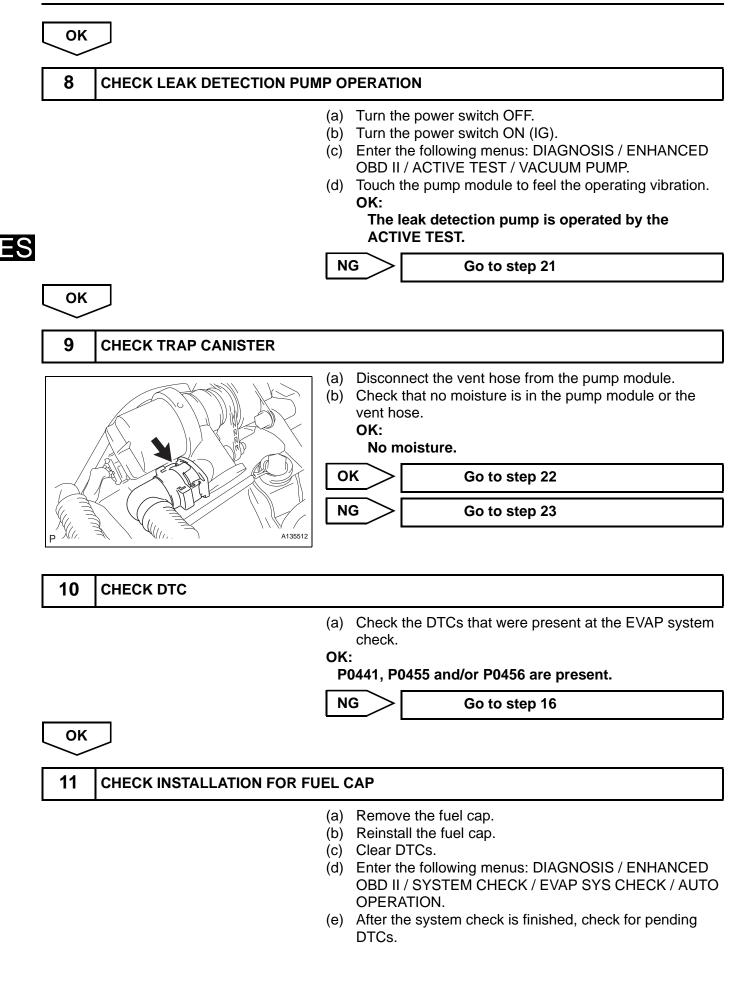

The intelligent tester is required to conduct the following diagnostic troubleshooting procedure.

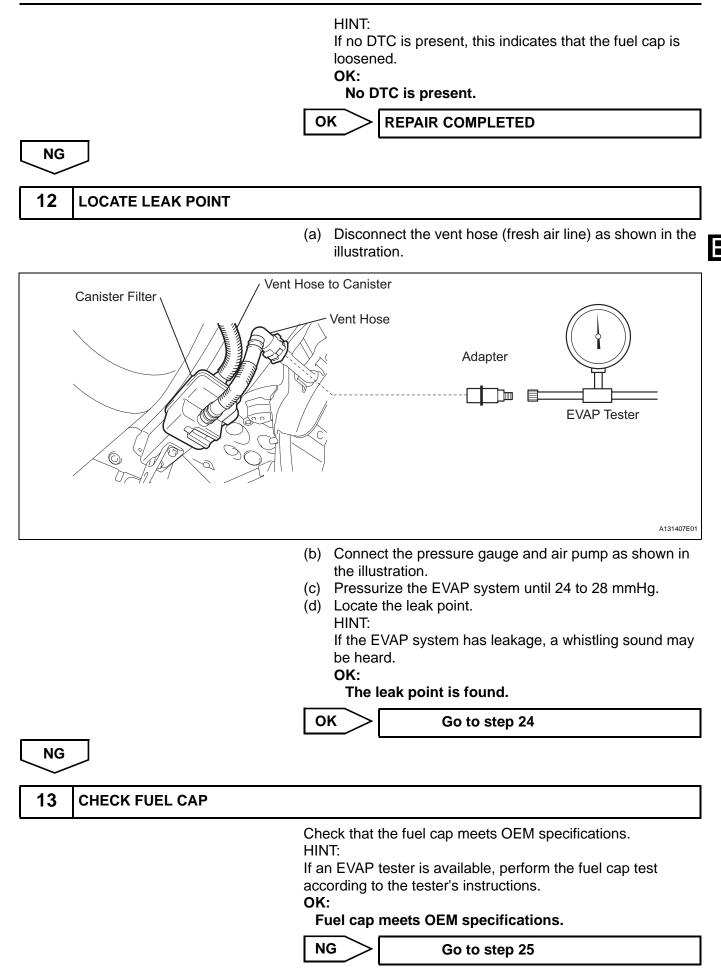
ES

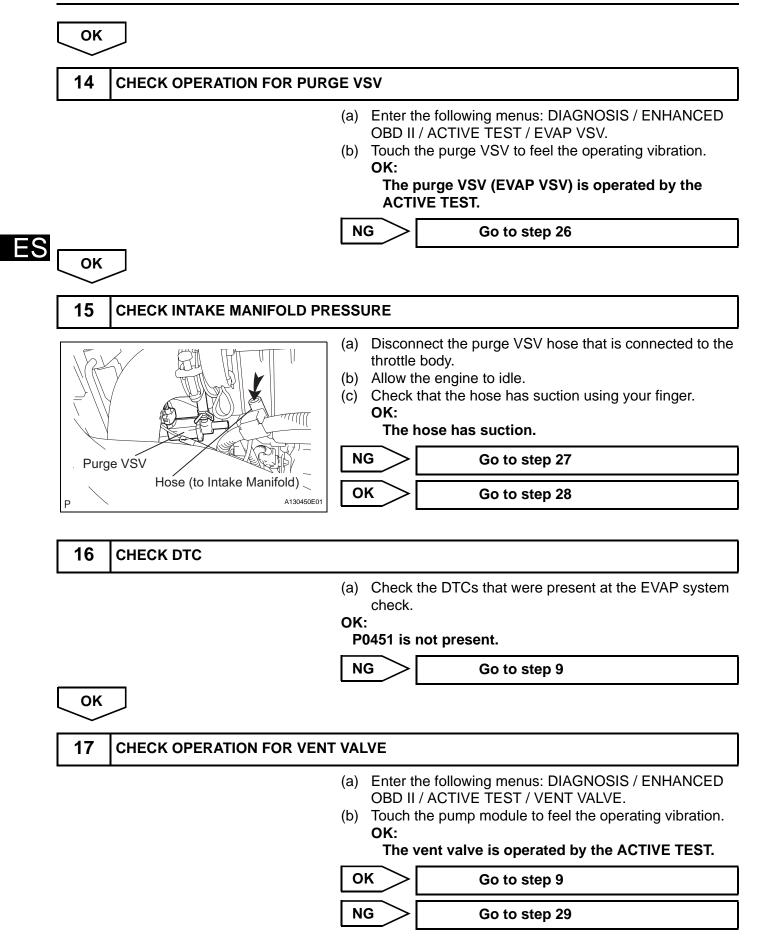
#### HINT:

- Using the intelligent tester monitor results enable the EVAP system to be confirmed.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine conditions when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

| 1 CONF                      | IRM DTC                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                             | <ul> <li>(a) Turn the power switch OFF and wait for 10 seconds.</li> <li>(b) Turn the power switch ON (IG).</li> <li>(c) Turn the power switch OFF and wait for 10 seconds.</li> <li>(d) Connect the intelligent tester to the DLC3.</li> <li>(e) Turn the power switch ON (IG).</li> <li>(f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.</li> <li>(g) Check if DTC P0446 is output.</li> </ul> |  |
|                             | NO Go to step 5                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| YES                         |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2 PERFORM EVAP SYSTEM CHECK |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                             | <ul> <li>(a) Note the freeze frame data and DTCs.</li> <li>(b) Clear DTCs.</li> <li>(c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO OPERATION.</li> <li>(d) After the system check is finished, check for pending DTCs.</li> <li>OK:</li> <li>No DTC is present.</li> </ul>                                                                                                          |  |
|                             | NG Go to step 6                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ок<br>З Снес                | <ul> <li>(a) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / TANK BYPASS VSV.</li> <li>(b) Touch the pressure switching valve (TANK BYPASS VSV) to feel the operating vibration.</li> <li>OK:</li> <li>The pressure switching valve is operated by the ACTIVE TEST</li> </ul>                                                                                                                                   |  |
|                             | ACTIVE TEST.                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |





NG


(c) Turn the EVAP VSV ON (purge VSV open) and check the VAPOR PRESS (EVAP pressure) for 10 seconds. OK:

#### EVAP pressure is higher than 755 mmHg.

Go to step 20







# 18 CHECK HARNESS AND CONNECTOR (PRESSURE SWITCHING VALVE - ECM AND EFI M RELAY) Wire Harness Side (a) Pressure Switching Valve Connector (a) Check the harness and the connectors between the pressure switching valve and the ECM. (1) Disconnect the V8 pressure switching valve connector.

- V8 Front View A072890E04
- TBP ECM Connector
- (2) Disconnect the E7 ECM connector.
  - (3) Measure the resistance between the wire harness side connectors.

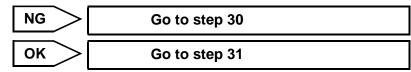
#### Standard resistance (Check for open)

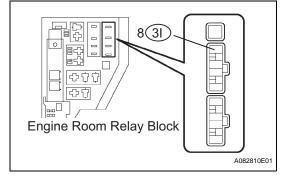
| Tester Connection                                 | Specified Condition |
|---------------------------------------------------|---------------------|
| V8-1 (Pressure switching valve) - E7-<br>18 (TBP) | Below 1 $\Omega$    |

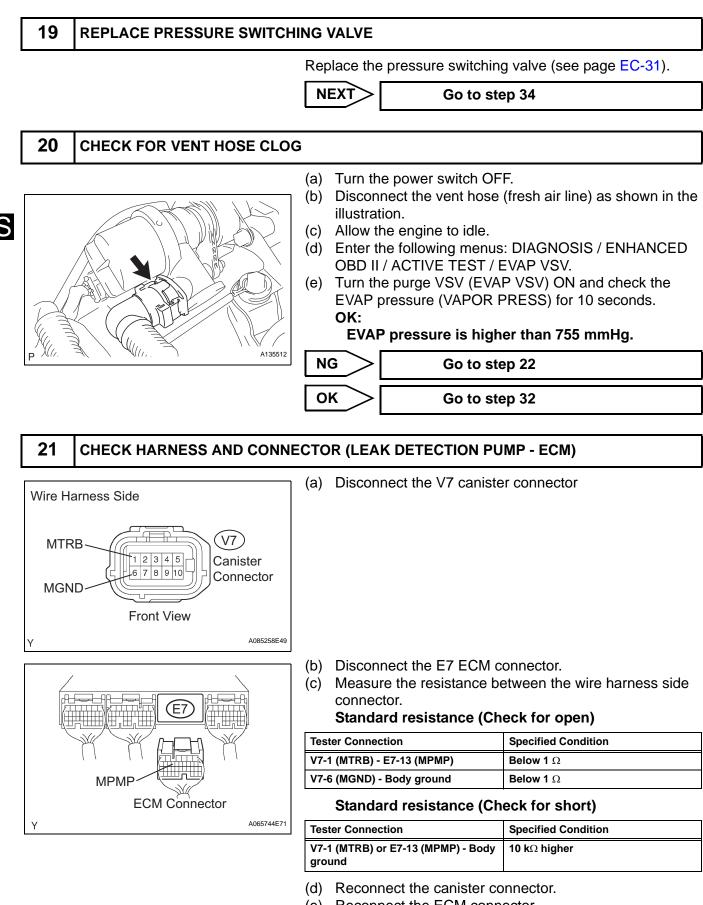
#### Standard resistance (Check for short)

| Tester Connection                                               | Specified Condition  |
|-----------------------------------------------------------------|----------------------|
| V8-1 (Pressure switching valve) or<br>E7-18 (TBP) - Body ground | 10 k $\Omega$ higher |

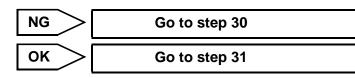
- (4) Reconnect the pressure switching valve connector.
- (5) Reconnect the ECM connector.
- (b) Check the harness and the connectors between the pressure switching valve and the EFI M relay.
  - (1) Disconnect the V8 pressure switching valve connector.
  - (2) Remove the integration relay from the engine room relay block.
  - (3) Measure the resistance between the wire harness side connector.


#### Standard resistance (Check for open)


| Tester Connection                                       | Specified Condition |
|---------------------------------------------------------|---------------------|
| V8-2 (Pressure switching valve) - 3I-8<br>(EFI M relay) | Below 1 Ω           |


#### Standard resistance (Check for short)

| Tester Connection                                                       | Specified Condition     |
|-------------------------------------------------------------------------|-------------------------|
| V8-2 (Pressure switching valve) or 3I-<br>8 (EFI M relay) - Body ground | 10 k $\Omega$ or higher |


- (4) Reconnect the pressure switching valve connector.
- (5) Reinstall the integration relay.



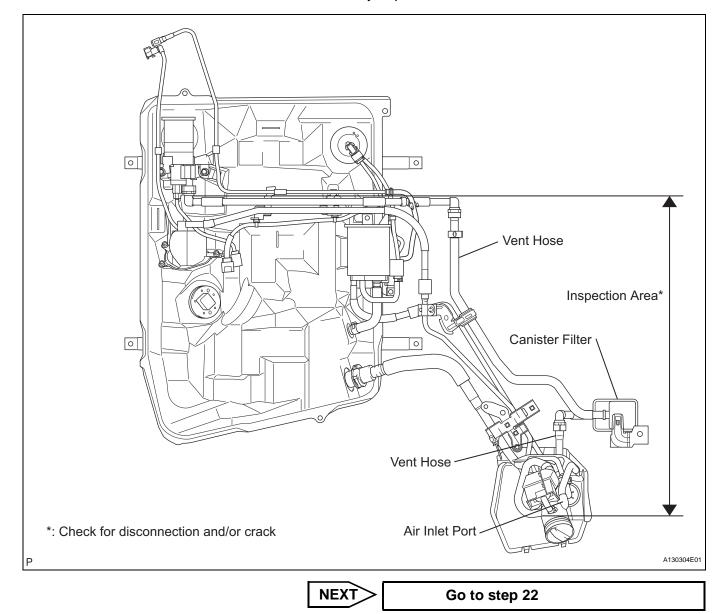




(e) Reconnect the ECM connector.

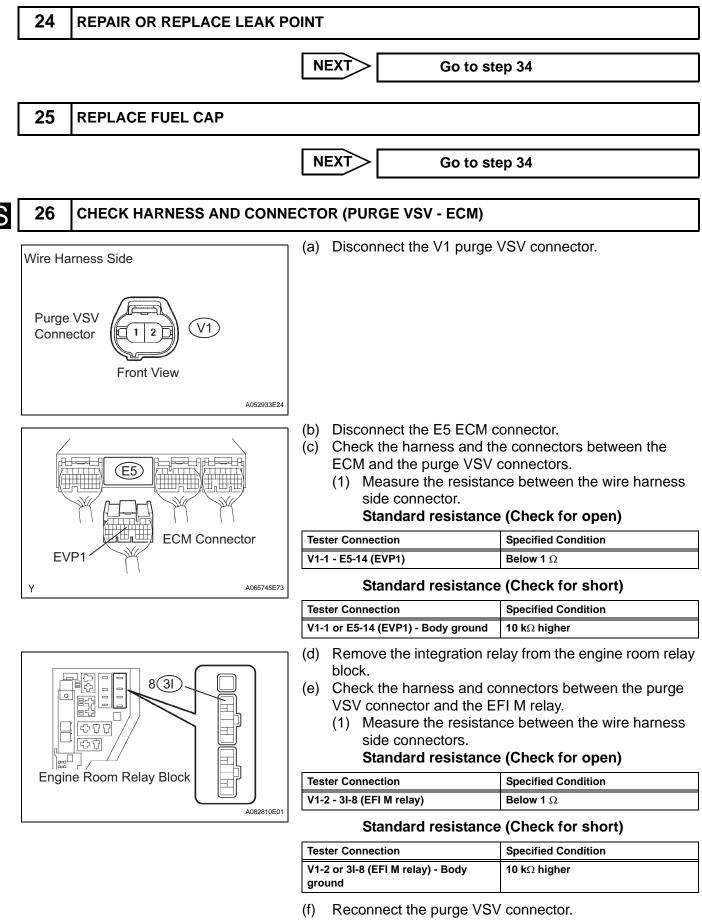


#### **22** REPLACE TRAP CANISTER WITH PUMP MODULE

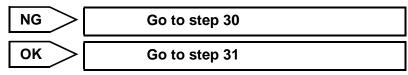

Replace the trap canister with pump module (see page EC-17).

NEXT

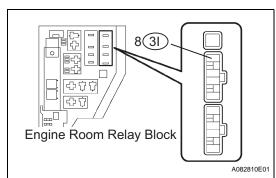
Go to step 34


#### **23** CHECK FOR VENT HOSE DAMAGE

Check for hose damage as shown in the illustration. If necessary, replace the vent hose.




ES-233


ES



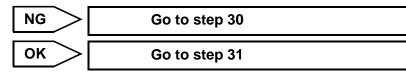
(g) Reconnect the ECM connector.



#### 27 **REPLACE HOSE (PURGE VSV - THROTTLE BODY)** NEXT Go to step 34 28 **REPLACE PURGE VSV** Replace the purge VSV (see page EC-23). NEXT Go to step 34 29 CHECK HARNESS AND CONNECTOR (VENT VALVE - ECM) (a) Disconnect the V7 canister connector. Wire Harness Side VLVB (V7 Canister 1 2 3 4 Connector 6 7 8 9 10 VGND Front View A085258E50 Disconnect the E7 ECM connector. (b) (c) Check the harness and the connectors between the ECM and the canister connectors. E7 (1) Measure the resistance between the wire harness side connector. Standard resistance (Check for open) **Tester Connection Specified Condition** VPMP V7-8 (VGND) - E7-26 (VPMP) Below 1 $\Omega$ ECM Connector Standard resistance (Check for short) A065744E72 **Tester Connection Specified Condition** V7-8 (VGND) or E7-26 (VPMP) - Body 10 k $\Omega$ higher ground



- (d) Remove the integration relay from the engine room relay block.
- (e) Check the harness and connectors between the canister connector and the EFI M relay.
  - (1) Measure the resistance between the wire harness side connectors.


#### Standard resistance (Check for open)

| Tester Connection                | Specified Condition |
|----------------------------------|---------------------|
| V7-9 (VLVB) - 3I-8 (EFI M relay) | Below 1 $\Omega$    |

#### Standard resistance (Check for short)

| Tester Connection                                  | Specified Condition  |
|----------------------------------------------------|----------------------|
| V7-9 (VLVB) or 3I-8 (EFI M relay) -<br>Body ground | 10 k $\Omega$ higher |

- (f) Reconnect the canister connector.
- (g) Reconnect the ECM connector.
- (h) Reinstall the integration relay.



#### **30** REPAIR OR REPLACE HARNESS AND CONNECTOR

NEXT

Go to step 34

001031

31 REPLACE ECM

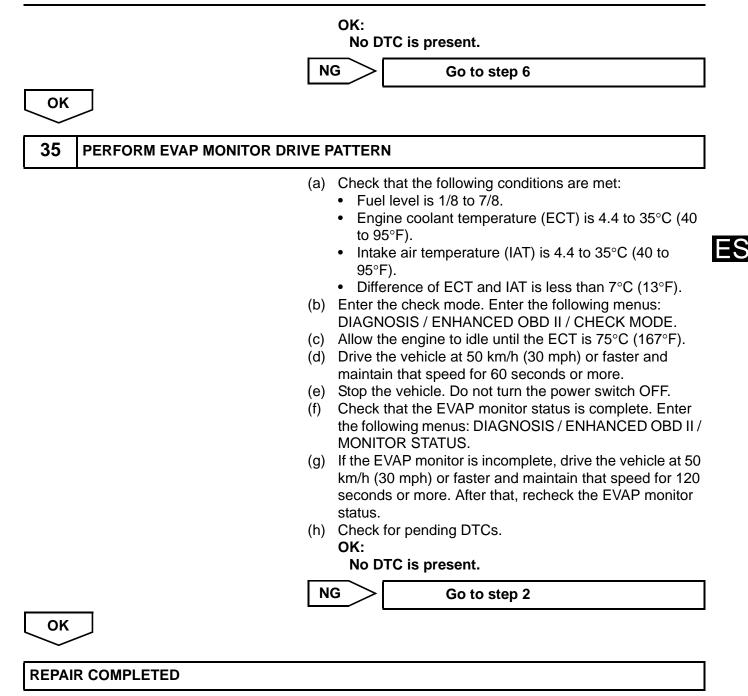
Replace the ECM (see page ES-469).



Go to step 34

#### **32** CHECK AND REPLACE VENT HOSE OR CANISTER FILTER

NEXT


Go to step 34

#### **33** REPLACE HOSE (PRESSURE SWITCHING VALVE AND FUEL TANK)

| NEXT |                              |                                                                                   |  |
|------|------------------------------|-----------------------------------------------------------------------------------|--|
| 34   | 34 PERFORM EVAP SYSTEM CHECK |                                                                                   |  |
|      | (a)<br>(b)                   | Turn the power switch ON (IG).<br>Enter the following menus: DIAGNOSIS / ENHANCED |  |

DTCs.

OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO OPERATION.(c) After the system check is finished, check for pending



| DTC | PUAAN | Evaporative Emission Control System Vent<br>Control Circuit |
|-----|-------|-------------------------------------------------------------|

#### DESCRIPTION

| DTC   | DTC Detection Condition                                                                                                                                                                                                                                                                                                      | Trouble Area                                                                                                                                          |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| P0446 | <ul> <li>One of the following condition is met while vehicle is driving (2 trip detection logic):</li> <li>No change in fuel tank pressure when purge VSV and pressure switching valve are opened</li> <li>No change in fuel tank pressure when fuel tank is depressurized until 740 mmHg and purge VSV is closed</li> </ul> | <ul> <li>Leak from EVAP system</li> <li>Pressure switching valve</li> <li>Purge VSV</li> <li>Vent valve</li> <li>Fuel tank pressure sensor</li> </ul> |

ES

This DTC is designed to detect the pressure switching valve (3-way VSV) malfunction. If the malfunction is detected while the vehicle is running, the ECM illuminates the MIL and sets a DTC (2 detection logic). The pressure switching valve located on the canister is used to detect leakage from the bladder tank into the fuel tank. The valve opens during the bladder tank leak check. Then, the fuel tank's fuel vapor flows to the intake manifold without passing the canister.

#### MONITOR DESCRIPTION

#### Pressure switching valve is stuck OFF (Closed)

The pressure switching valve opens when the purge VSV opens while the vehicle is running. Then, the fuel tank pressure drops 2 mmHg or more when the pressure switching valve is normal. If the pressure does not change, the ECM interprets this as a malfunction. The ECM illuminates the MIL and sets a DTC (2 trip detection logic).

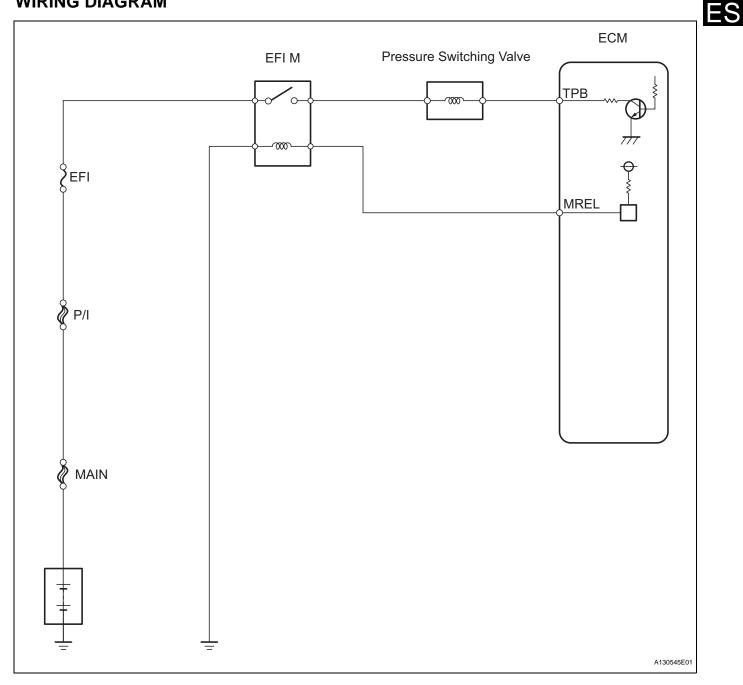
#### Pressure switching valve is stuck ON (Open)

In order to depressurize the fuel tank, the pump module's vent valve is turned ON (close) when the purge VSV opens while the vehicle is running. After the fuel tank pressure drops 20 mmHg, the purge VSV closes. Then, the fuel tank pressure rises slightly when the pressure switching valve is normal. If the pressure rises quickly, the ECM interprets this as a malfunction. The ECM illuminates the MIL and sets a DTC (2 trip detection logic).

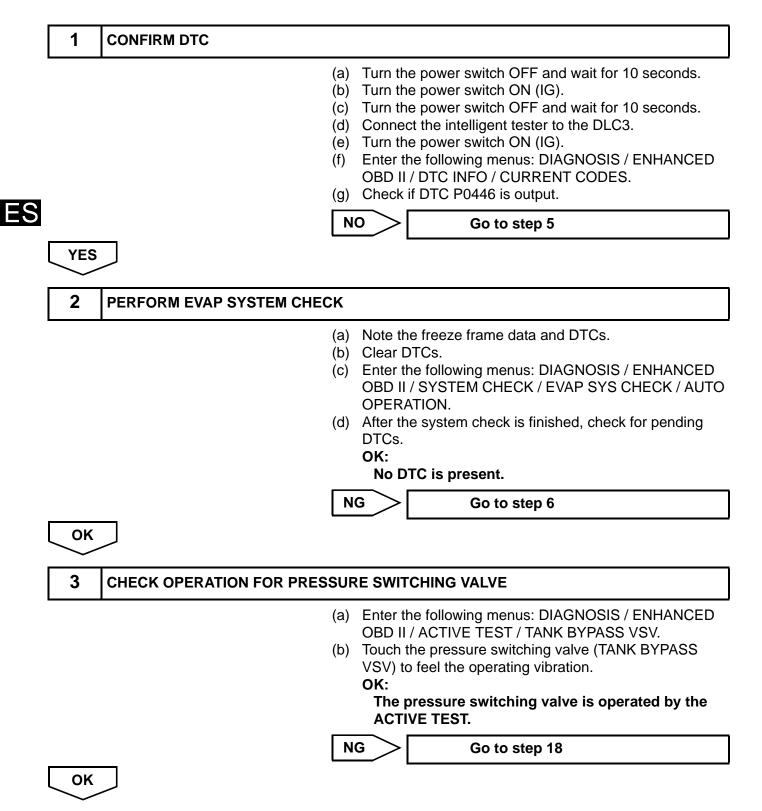
#### **MONITOR STRATEGY**

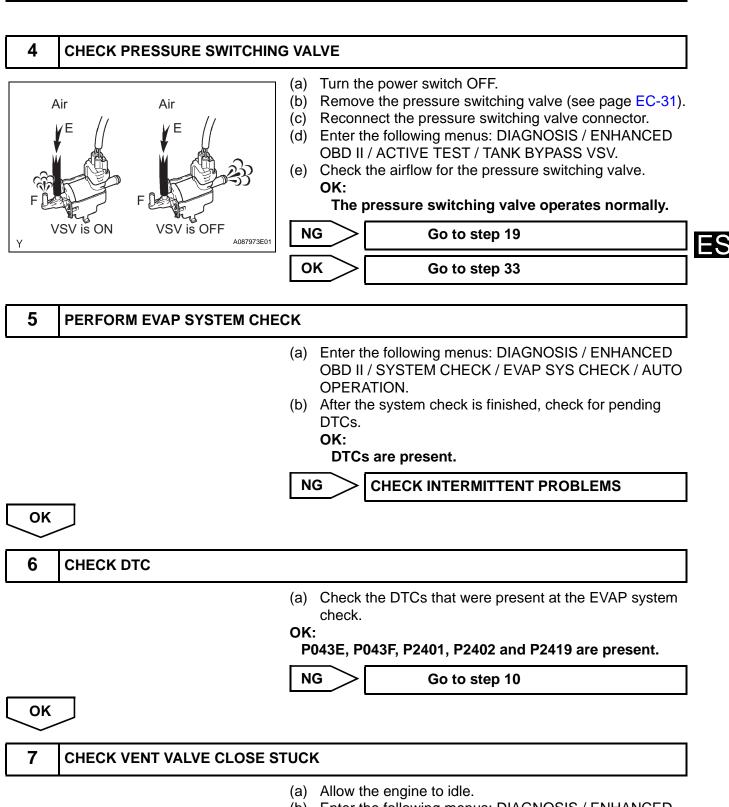
| Related DTCs                | P0466: Pressure switching valve fixed |
|-----------------------------|---------------------------------------|
| Required Sensors/Components | Pressure switching valve              |
| Frequency of Operation      | Once per driving cycle                |
| Duration                    | Within 10 seconds                     |
| MIL Operation               | 2 driving cycles                      |
| Sequence of Operation       | None                                  |

# **TYPICAL ENABLING CONDITIONS**


| Monitor runs whenever following DTC not present | P0441: Purge VSV<br>P1450 - P1453: FTP sensor    |
|-------------------------------------------------|--------------------------------------------------|
| Altitude                                        | Less than 2,400 m (8,000 ft.)                    |
| Battery voltage                                 | 11 V or more                                     |
| IAT at engine start - ECT at engine start       | -7 to 11°C (-12.6 to 20°F)                       |
| ECT at engine start                             | 4.4 to 35°C (40 to 95°F)                         |
| IAT at engine start                             | 4.4 to 35°C (40 to 95°F)                         |
| Vehicle speed                                   | Constant between 45 and 130 km/h (28 and 80 mph) |
| Time after engine start                         | Less than 30 minutes                             |
| HV ECU                                          | ОК                                               |

| ĺ | Fail-safe via HV ECU | Not executed        |
|---|----------------------|---------------------|
|   | Purge flow volume    | 0.08 g/sec. or more |

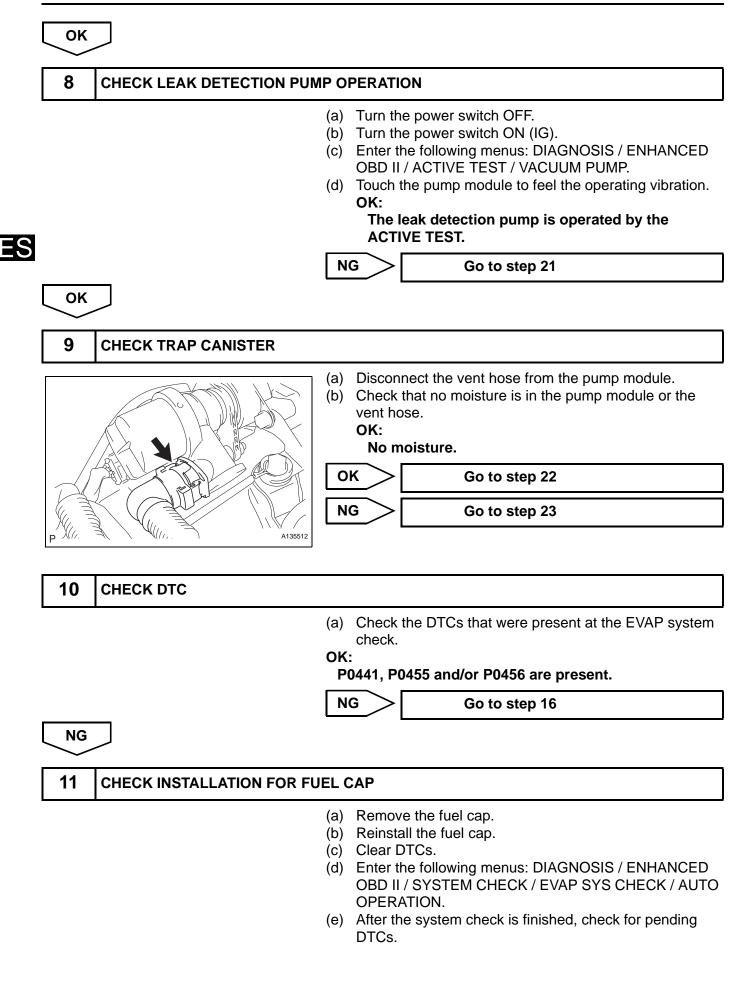

### **TYPICAL MALFUNCTION THRESHOLDS**

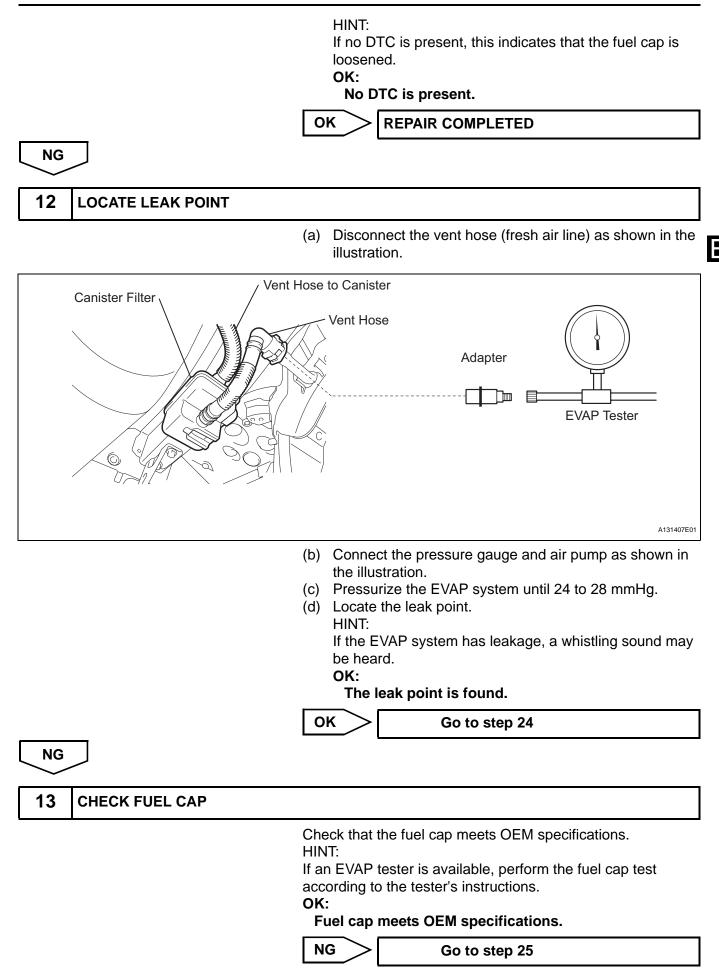

| Either of following condition 1 or 2 is met               | -                               |
|-----------------------------------------------------------|---------------------------------|
| 1. Following conditions are met                           | -                               |
| FTP change when pressure switching valve is ON            | 0.267 kPa (2 mmHg) or more      |
| FTP                                                       | -2.667 kPa (740 mmHg) or higher |
| FTP increase after 20 mmHg vacuum is applied to fuel tank | 1.333 kPa (10 mmHg) or more     |

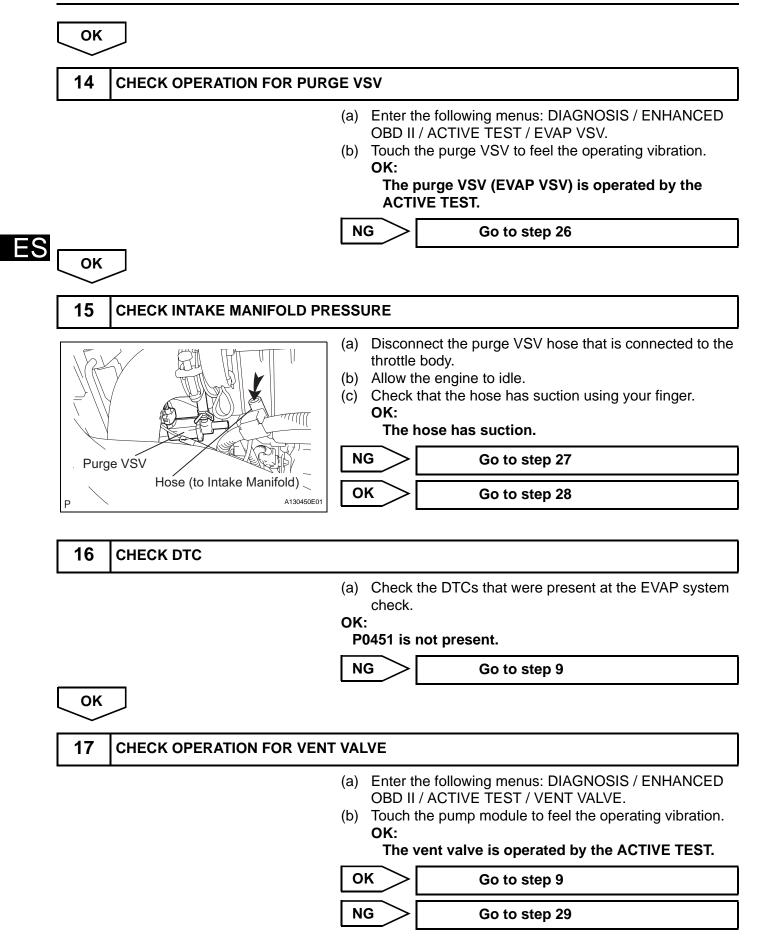
#### WIRING DIAGRAM



#### **INSPECTION PROCEDURE**

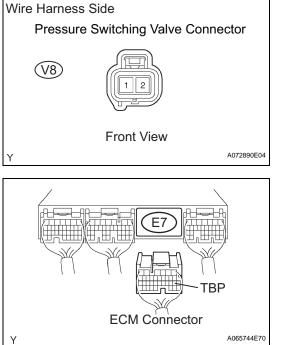


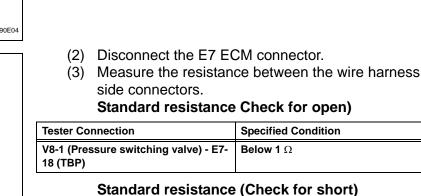


NG

- (b) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / EVAP VSV.
- (c) Turn the EVAP VSV ON (purge VSV open) and check the VAPOR PRESS (EVAP pressure) for 10 seconds. OK:

#### EVAP pressure is higher than 755 mmHg.






# CHECK HARNESS AND CONNECTOR (PRESSURE SWITCHING VALVE - ECM AND EFI M RELAY) (a) Check the harness and the connectors between the

connector.



18

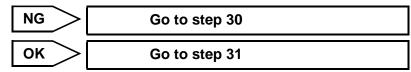


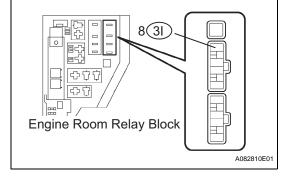
pressure switching valve and the ECM.

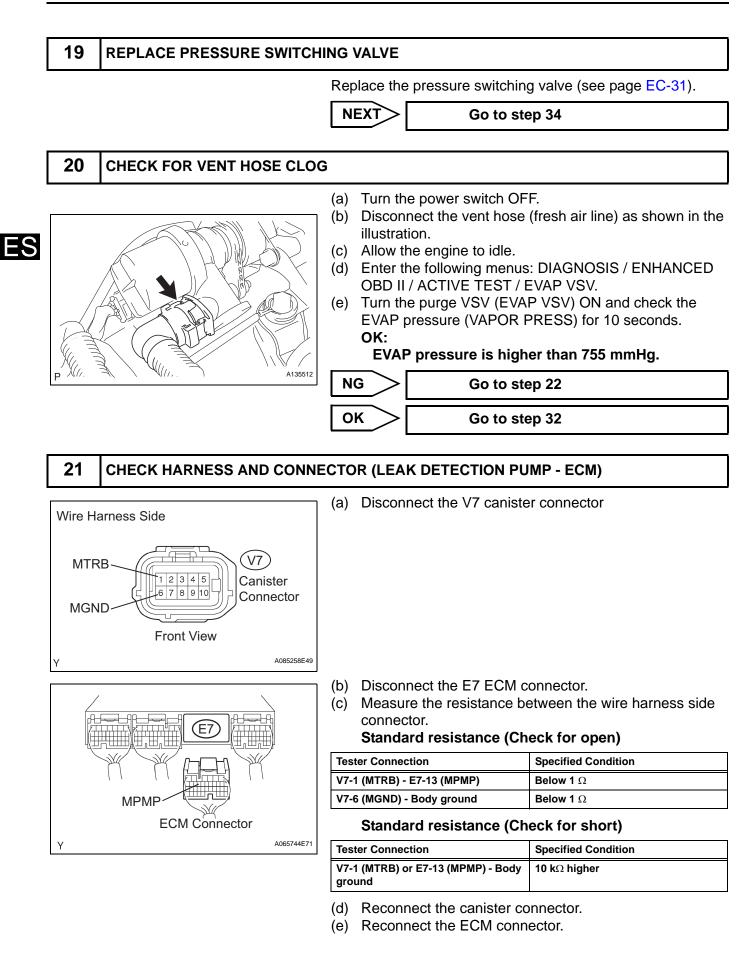
(1) Disconnect the V8 pressure switching valve

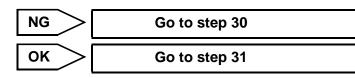
| Tester Connection                                               | Specified Condition  |
|-----------------------------------------------------------------|----------------------|
| V8-1 (Pressure switching valve) or<br>E7-18 (TBP) - Body ground | 10 k $\Omega$ higher |

- (4) Reconnect the pressure switching valve connector.
- (5) Reconnect the ECM connector.
- (b) Check the harness and the connectors between the pressure switching valve and the EFI M relay.
  - (1) Disconnect the V8 pressure switching valve connector.
  - (2) Remove the integration relay from the engine room relay block.
  - (3) Measure the resistance between the wire harness side connector.


#### Standard resistance (Check for open)


| [ | Tester Connection                                       | Specified Condition |
|---|---------------------------------------------------------|---------------------|
| Ī | V8-2 (Pressure switching valve) - 3I-8<br>(EFI M relay) | Below 1 Ω           |


#### Standard resistance (Check for short)


| Tester Connection                                                       | Specified Condition     |
|-------------------------------------------------------------------------|-------------------------|
| V8-2 (Pressure switching valve) or 3I-<br>8 (EFI M relay) - Body ground | 10 k $\Omega$ or higher |

- (4) Reconnect the pressure switching valve connector.
- (5) Reinstall the integration relay.

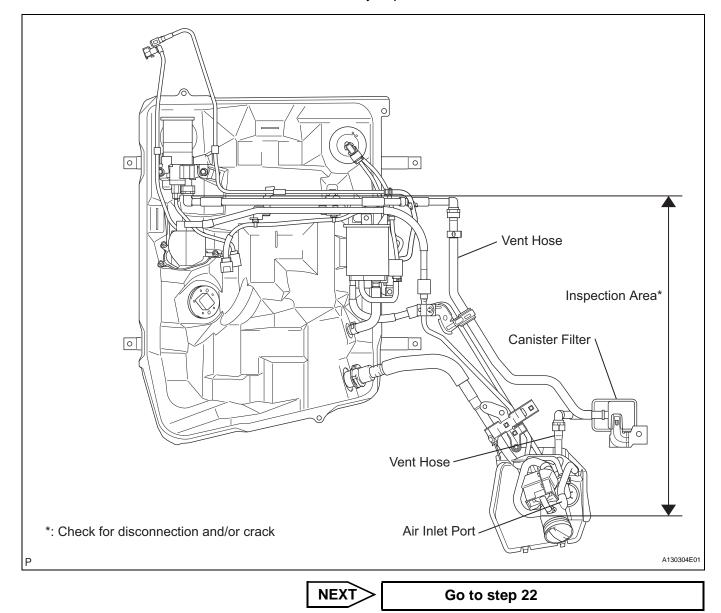




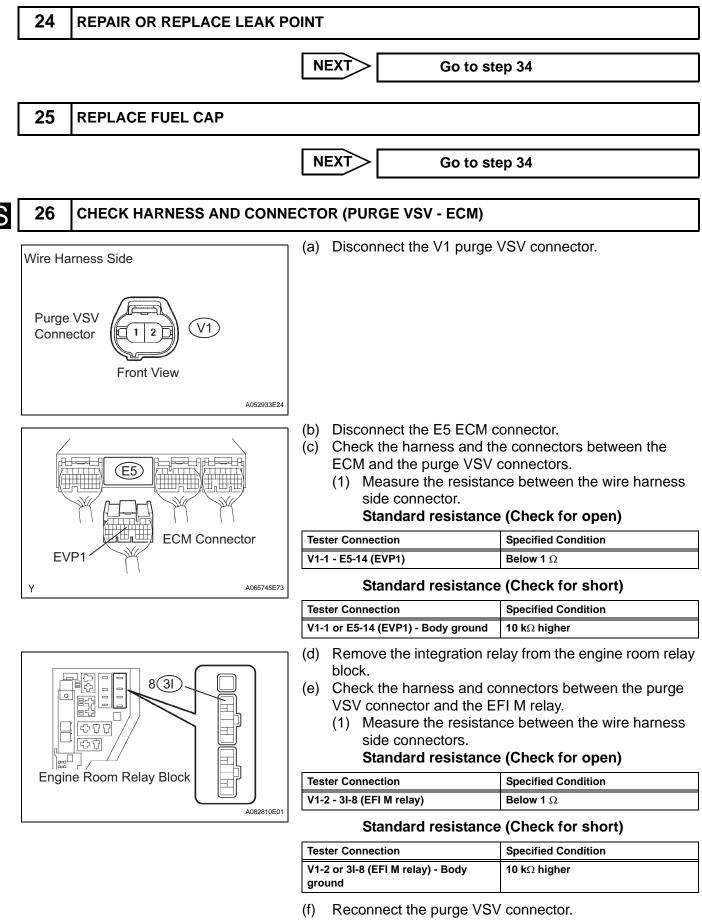




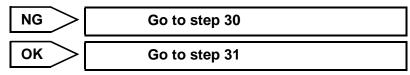
#### **22** REPLACE TRAP CANISTER WITH PUMP MODULE


Replace the trap canister with pump module (see page EC-17).

NEXT


Go to step 34

#### **23** CHECK FOR VENT HOSE DAMAGE


Check for hose damage as shown in the illustration. If necessary, replace the vent hose.



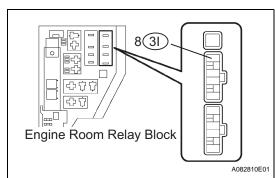
ES



(g) Reconnect the ECM connector.



# 27 **REPLACE HOSE (PURGE VSV - THROTTLE BODY)** NEXT Go to step 34 28 **REPLACE PURGE VSV**


Replace the purge VSV (see page EC-23).

NEXT

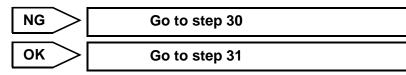
Go to step 34

#### 29 CHECK HARNESS AND CONNECTOR (VENT VALVE - ECM) (a) Disconnect the V7 canister connector. Wire Harness Side VLVB (V7 Canister 1 2 3 4 Connector 6 7 8 9 VGND Front View A085258E50 Disconnect the E7 ECM connector. (b) (c) Check the harness and the connectors between the ECM and the canister connectors. E7 (1) Measure the resistance between the wire harness side connector. Standard resistance (Check for open) **Tester Connection Specified Condition** VPMP V7-8 (VGND) - E7-26 (VPMP) Below 1 $\Omega$ **ECM** Connector Standard resistance (Check for short) A065744E72

| Standard resistance (Check for short) |                      |  |
|---------------------------------------|----------------------|--|
| Tester Connection                     | Specified Condition  |  |
| V7-8 (VGND) or E7-26 (VPMP) - Body    | 10 k $\Omega$ higher |  |
| ground                                |                      |  |



- (d) Remove the integration relay from the engine room relay block.
- (e) Check the harness and connectors between the canister connector and the EFI M relay.
  - (1) Measure the resistance between the wire harness side connectors.


#### Standard resistance (Check for open)

| Tester Connection                | Specified Condition |  |
|----------------------------------|---------------------|--|
| V7-9 (VLVB) - 3I-8 (EFI M relay) | Below 1 Ω           |  |

#### Standard resistance (Check for short)

| Tester Connection                                  | Specified Condition  |  |
|----------------------------------------------------|----------------------|--|
| V7-9 (VLVB) or 3I-8 (EFI M relay) -<br>Body ground | 10 k $\Omega$ higher |  |

- Reconnect the canister connector. (f)
- (g) Reconnect the ECM connector.
- (h) Reinstall the integration relay.



#### 30 REPAIR OR REPLACE HARNESS AND CONNECTOR

NEXT

Go to step 34

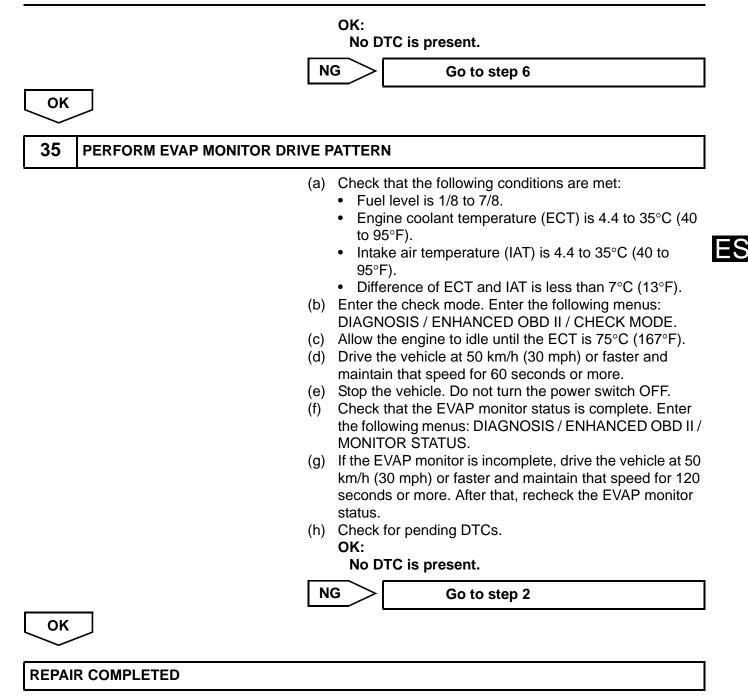
```
31
    REPLACE ECM
```

Replace the ECM (see page ES-469).



Go to step 34

#### 32 CHECK AND REPLACE VENT HOSE OR CANISTER FILTER


NEXT

Go to step 34

#### 33 REPLACE HOSE (PRESSURE SWITCHING VALVE AND FUEL TANK)

| NEXT |                           |                                                                                                                                    |  |  |  |
|------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 34   | PERFORM EVAP SYSTEM CHECK |                                                                                                                                    |  |  |  |
|      | (a)<br>(b)                | Turn the power switch ON (IG).<br>Enter the following menus: DIAGNOSIS / ENHANCED<br>OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO |  |  |  |

OPERATION. (c) After the system check is finished, check for pending DTCs.



|    | DTC P0450 |       | Evaporative Emission Control System Pressure<br>Sensor Malfunction         |  |  |
|----|-----------|-------|----------------------------------------------------------------------------|--|--|
|    | DTC       | P0451 | Evaporative Emission Control System Pressure<br>Sensor Range / Performance |  |  |
|    | DTC       | P0452 | Evaporative Emission Control System Pressure<br>Sensor / Switch Low Input  |  |  |
| ES | DTC       | P0453 | Evaporative Emission Control System Pressure<br>Sensor / Switch High Input |  |  |

## DTC SUMMARY

| DTC No. | Monitoring Items                                            | Malfunction<br>Detection<br>Conditions                                                                                    | Trouble Area                                                                                                                                                                                         | Detection Timing                                                                                 | Detection logic |
|---------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|
| P0450   | Canister pressure<br>sensor voltage<br>abnormal fluctuation | Sensor output<br>voltage rapidly<br>fluctuates beyond<br>upper and lower<br>malfunction<br>thresholds for 0.5<br>seconds. | <ul> <li>Canister pump<br/>module</li> <li>ECM</li> </ul>                                                                                                                                            | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Power switch ON<br/>(IG)</li> </ul> | 1 trip          |
| P0451   | Canister pressure sensor noisy                              | Sensor output<br>voltage fluctuates<br>frequently in certain<br>time period.                                              | <ul> <li>Canister pump<br/>module</li> <li>EVAP system<br/>hose (pipe from<br/>air inlet port to<br/>canister pump<br/>module, canister<br/>filter, fuel tank<br/>vent hose)</li> <li>ECM</li> </ul> | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Engine running</li> </ul>           | 2 trip          |
| P0451   | Canister pressure sensor stuck                              | Sensor output<br>voltage does not vary<br>in certain time period.                                                         | <ul> <li>Canister pump<br/>module</li> <li>EVAP system<br/>hose (pipe from<br/>air inlet port to<br/>canister pump<br/>module, canister<br/>filter, fuel tank<br/>vent hose)</li> <li>ECM</li> </ul> | EVAP monitoring<br>(power switch<br>OFF)                                                         | 2 trip          |
| P0452   | Canister pressure sensor voltage low                        | Sensor output<br>voltage less than<br>0.45 V for 0.5<br>seconds.                                                          | <ul> <li>Canister pump<br/>module</li> <li>Connector/wire<br/>harness (canister<br/>pump module -<br/>ECM)</li> <li>ECM</li> </ul>                                                                   | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Power switch ON<br/>(IG)</li> </ul> | 1 trip          |
| P0453   | Canister pressure sensor voltage high                       | Sensor output<br>voltage more than 4.9<br>V for 0.5 seconds.                                                              | <ul> <li>Canister pump<br/>module</li> <li>Connector/wire<br/>harness (canister<br/>pump module -<br/>ECM)</li> <li>ECM</li> </ul>                                                                   | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Power switch ON<br/>(IG)</li> </ul> | 1 trip          |

HINT:

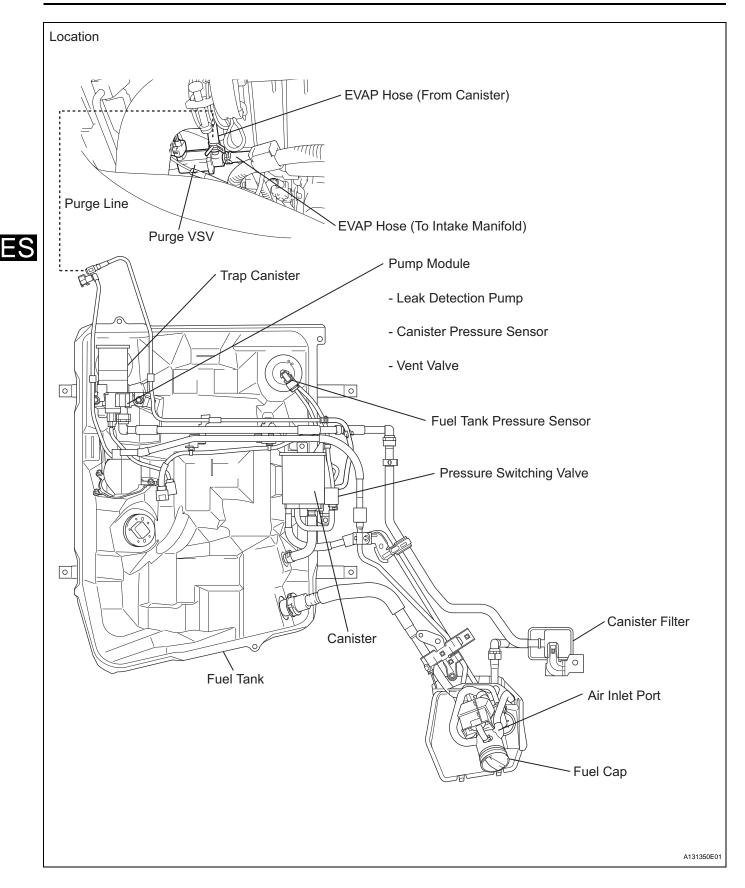
The canister pressure sensor is built into the canister pump module.

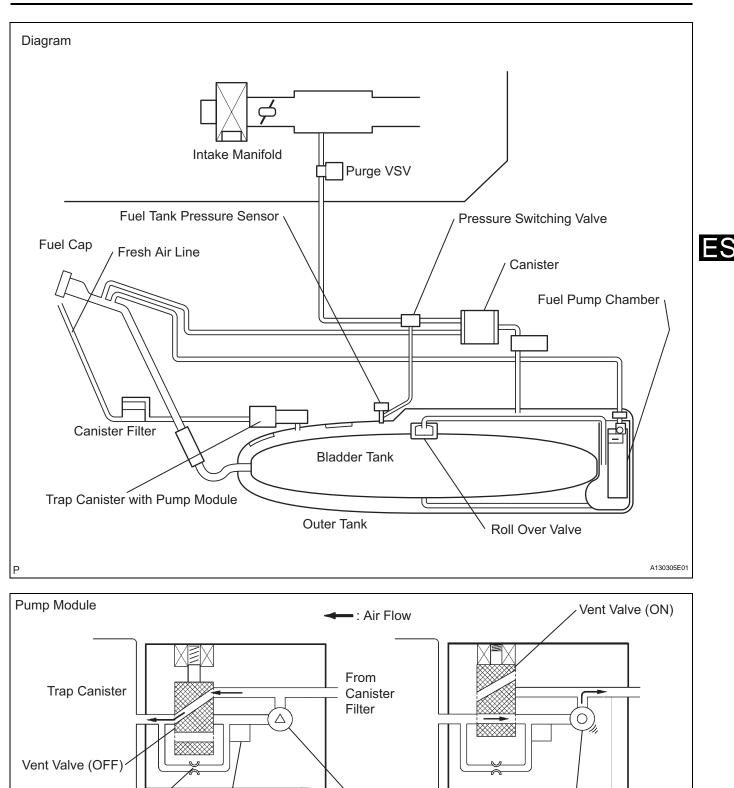
# DESCRIPTION

### NOTICE:

In this vehicle's EVAP system, turning ON the vent valve does not seal off the EVAP system. To check for leaks in the EVAP system, disconnect the air inlet vent hose and apply pressure from the atmosphere side of the canister.

While the engine is running, if a predetermined condition (closed loop, etc.) is met, the purge VSV is opened by the ECM and stored fuel vapors in the canister are purged to the intake manifold. The ECM changes the duty cycle ratio of the purge VSV to control purge flow volume.


The purge flow volume is also determined by the intake manifold pressure. Atmospheric pressure is allowed into the canister through the vent valve to ensure that the purge flow is maintained when the negative pressure (vacuum) is applied to the canister.


#### Key-off monitor

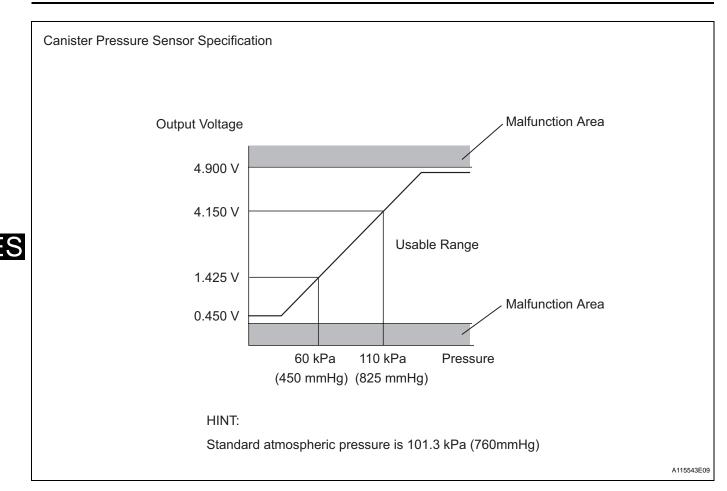
This monitor checks for Evaporative Emission (EVAP) system leaks and canister pump module malfunctions. The monitor starts 5 hours\* after the power switch is turned OFF. More than 5 hours are required to allow the fuel to cool down to stabilize the Fuel Tank Pressure (FTP), thus making the EVAP system monitor more accurate.

The leak detection pump creates negative pressure (vacuum) in the EVAP system and the pressure is measured. Finally, the ECM monitors for leaks from the EVAP system and malfunctions in both the canister pump module and purge VSV, based on the EVAP pressure. HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.



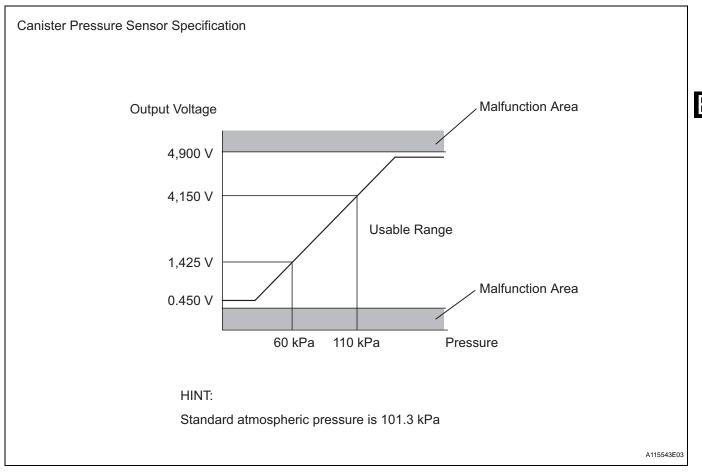



Leak Detection Pump (OFF)

**Reference Orifice** 

Pressure Sensor




Leak Detection Pump (ON)



| Components                         | Operations                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canister, Trap canister            | Contains activated charcoal to absorb EVAP generated in fuel tank.                                                                                                                                                                                                                                                                                |
| Cut-off valve                      | Located in fuel tank. Valve floats and closes when fuel tank 100% full.                                                                                                                                                                                                                                                                           |
| Purge Vacuum Switching Valve (VSV) | Opens or closes line between canister and intake manifold. ECM uses<br>purge VSV to control EVAP purge flow. In order to discharge EVAP<br>absorbed by canister to intake manifold, ECM opens purge VSV.<br>EVAP discharge volume to intake manifold controlled by purge VSV<br>duty cycle ratio (current-carrying time) (open: ON; closed: OFF). |
| Roll-over valve                    | Located in fuel tank. Valve closes by its own weight when vehicle overturns to prevent fuel from spilling out.                                                                                                                                                                                                                                    |
| Soak timer                         | Built into ECM. To ensure accurate EVAP monitor, measures 5 hours (+-15 min) after power switch OFF. This allows fuel to cool down, stabilizing Fuel Tank Pressure (FTP). When approximately 5 hours elapsed, ECM activates.                                                                                                                      |
| Pressure switching valve           | The pressure switching valve located on the canister is used to detect<br>leakage from the bladder tank into the fuel tank. The valve opens<br>during the bladder tank leak check. Then, the fuel tank's fuel vapor<br>flows to the intake manifold without passing the canister.                                                                 |
| Pump module                        | Consists of (a) to (d) below. pump module cannot be disassembled.                                                                                                                                                                                                                                                                                 |
| (a) Vent valve                     | Vents and closes EVAP system. When ECM turns valve ON, EVAP system closed. When ECM turns valve OFF, EVAP system vented. Negative pressure (vacuum) created in EVAP system to check for EVAP leaks by closing purge VSV, turning vent valve ON (closed) and operating leak detection pump.                                                        |
| (b) Canister pressure sensor       | Indicates pressure as voltage. ECM supplies regulated 5 V to canister pressure sensor, and uses feedback from sensor to monitor EVAP system pressure.                                                                                                                                                                                             |
| (c) Leak detection pump            | Creates negative pressure (vacuum) in EVAP system for leak check.                                                                                                                                                                                                                                                                                 |

| Components            | Operations                                                                                                                                                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) Reference orifice | Has opening with 0.02 inch diameter. Vacuum produced through orifice by closing purge VSV, turning vent valve OFF and operating leak detection pump to monitor 0.02 inch leak criterion. 0.02 inch leak criterion indicates small leak of EVAP. |

# MONITOR DESCRIPTION



(a) DTC P0450: Canister pressure sensor voltage abnormal fluctuation

If the canister pressure sensor voltage output rapidly fluctuates between less than 0.45 V and more than 4.9 V, the ECM interprets this as an open or short circuit malfunction in the canister pressure sensor or its circuit, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC (1 trip detection logic).

- (b)DTC P0451: Canister pressure sensor noisy or stuck If the canister pressure sensor voltage output fluctuates rapidly for 10 seconds, the ECM stops the EVAP system monitor. The ECM interprets this as noise from the canister pressure sensor, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC. Alternatively, if the sensor voltage output does not change for 10 seconds, the ECM interprets this as the sensor being stuck, and stops the monitor. The ECM then illuminates the MIL and sets the DTC. (Both of the malfunctions are detected by 2 trip detection logic).
- (c) DTC P0452: Canister pressure sensor voltage low If the canister pressure sensor voltage output is below 0.45 V, the ECM interprets this as an open or short circuit malfunction in the canister pressure sensor or its circuit, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC (1 trip detection logic).
- (d) DTC P0453: Canister pressure sensor voltage high If the canister pressure sensor voltage output is 4.9 V or more, the ECM interprets this as an open or short circuit malfunction in the canister pressure sensor or its circuit, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC (1 trip detection logic).

# **MONITOR STRATEGY**

| Required Sensors/Components | Canister pump module                                      |
|-----------------------------|-----------------------------------------------------------|
| Frequency of Operation      | Continuous                                                |
| Duration                    | Within 15 minutes                                         |
| MIL Operation               | Immediate: P0450, P0452, P0453<br>2 driving cycles: P0451 |
| Sequence of Operation       | None                                                      |

# TYPICAL ENABLING CONDITIONS

### P0451 (Noise Monitor):

| Monitor runs whenever following DTCs are not present            | None                                                   |
|-----------------------------------------------------------------|--------------------------------------------------------|
| Atmospheric pressure                                            | 70 to 110 kPa (525 to 825 mmHg)<br>[absolute pressure] |
| Battery voltage                                                 | 10.5 V or more                                         |
| Intake air temperature                                          | 4.4 to 35 °C (40 to 95°F)                              |
| EVAP canister pressure sensor malfunction (P0450, P0452, P0453) | Not detected                                           |
| Either of following conditions is met                           | A or B                                                 |
| A. Engine                                                       | Running                                                |
| B. Soak time (power switch OFF time)                            | 5 hours                                                |

#### Example of restart time

| First time  | 7 hours                |
|-------------|------------------------|
| Second time | 9 hours and 30 minutes |

#### P0451 (Stuck Monitor):

| Monitor runs whenever following DTCs are not present | None                            |
|------------------------------------------------------|---------------------------------|
| Atmospheric pressure                                 | 70 to 110 kPa (525 to 825 mmHg) |
| Battery voltage                                      | 10.5 V or more                  |
| Intake air temperature                               | 4.4 to 35°C (40 to 95°F)        |
| EVAP pressure sensor malfunction                     | Not detected                    |
| Soak time (power switch OFF time)                    | 5 hours                         |

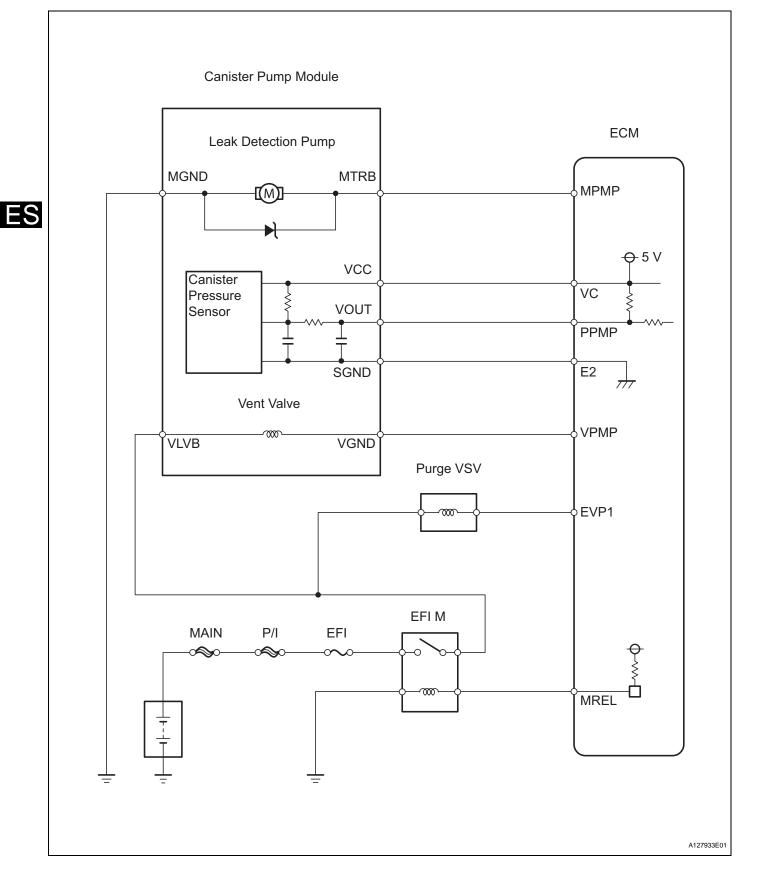
#### Example of restart time

| First time  | 7 hours                |
|-------------|------------------------|
| Second time | 9 hours and 30 minutes |

#### P0450, P0452 and P0453:

| Monitor runs whenever following DTCs are not present | None       |
|------------------------------------------------------|------------|
| When either of following condition is met            | (a) or (b) |
| (a) Power switch                                     | ON         |
| (b) Soak timer                                       | ON         |

# **TYPICAL MALFUNCTION THRESHOLDS**


### 1. P0450: Canister pressure sensor chattering

| EVAP pressure                                                          | Less than 42.1 kPa (315.9 mmHg) or more than 123.8 kPa (928.4 mmHg) |
|------------------------------------------------------------------------|---------------------------------------------------------------------|
| 2. P0451: Canister pressure sensor noise                               |                                                                     |
| Pressure variation indicated by canister pressure sensor in 10 seconds | More than +-0.3 kPa (+-2.25 mmHg) 10 times                          |

### **1NZ-FXE ENGINE CONTROL SYSTEM** – SFI SYSTEM

| 3. P0451: Canister pressure sensor stuck                     |                                  |  |
|--------------------------------------------------------------|----------------------------------|--|
| EVAP pressure change during reference pressure in 10 seconds | Less than 1 kPa (7.5 mmHg)       |  |
| 4. P0452: Canister pressure sensor low voltage               |                                  |  |
| EVAP pressure                                                | Less than 42.1 kPa (315.9 mmHg)  |  |
| 5. P0453: Canister pressure sensor high voltage              |                                  |  |
| EVAP pressure                                                | More than 123.8 kPa (928.4 mmHg) |  |

## WIRING DIAGRAM



## **INSPECTION PROCEDURE**

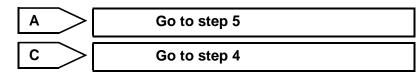
NOTICE:

1

- When a vehicle is brought into the workshop, leave it as it is. Do not change the vehicle condition. For example, do not tighten the fuel cap.
- Do not disassemble the canister pump module.

**CONFIRM DTC AND EVAP PRESSURE** 

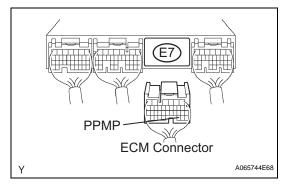
The intelligent tester is required to conduct the following diagnostic troubleshooting


| procedure. |  |
|------------|--|
|            |  |

| (a) | Connect the intelligent tester to the DLC3. |  |
|-----|---------------------------------------------|--|

- (b) Turn the power switch ON (IG) and turn the intelligent tester ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (d) Read the values.
- (e) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / EVAP / VAPOR PRESS.
- Read the EVAP pressure displayed on the intelligent (f) tester.

#### Result


| Display (DTC Output) | Test Result                  | Suspected Trouble Areas                                                                                                                             | Proceed to |
|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| P0451                | -                            | Canister pressure sensor                                                                                                                            | Α          |
| P0452                | Less than 45 kPa (430 mmHg)  | <ul> <li>Wire harness/connector<br/>(ECM - canister pressure<br/>sensor)</li> <li>Canister pressure sensor</li> <li>Short in ECM circuit</li> </ul> | В          |
| P0453                | More than 120 kPa (900 mmHg) | <ul> <li>Wire harness/connector<br/>(ECM - canister pressure<br/>sensor)</li> <li>Canister pressure sensor</li> <li>Open in ECM circuit</li> </ul>  | C          |





2

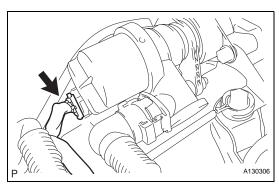
CHECK HARNESS AND CONNECTOR (CANISTER PUMP MODULE - ECM)



- (a) Turn the power switch OFF.
- (b) Disconnect the E7 ECM connector.
- (c) Measure the resistance between the PPMP (E7-30) terminal of the ECM connector and the body ground.

#### Result

Α


3

| Test Results          | Suspected Trouble Areas                                                                                                                | Proceed to |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------|
| 10 $\Omega$ or less   | <ul> <li>Wire harness/connector (ECM -<br/>canister pressure sensor)</li> <li>Short in canister pressure sensor<br/>circuit</li> </ul> | A          |
| 10 k $\Omega$ or more | <ul> <li>Wire harness/connector (ECM - canister pressure sensor)</li> <li>Short in ECM circuit</li> </ul>                              | В          |



ES

### CHECK HARNESS AND CONNECTOR (CANISTER PUMP MODULE - ECM)



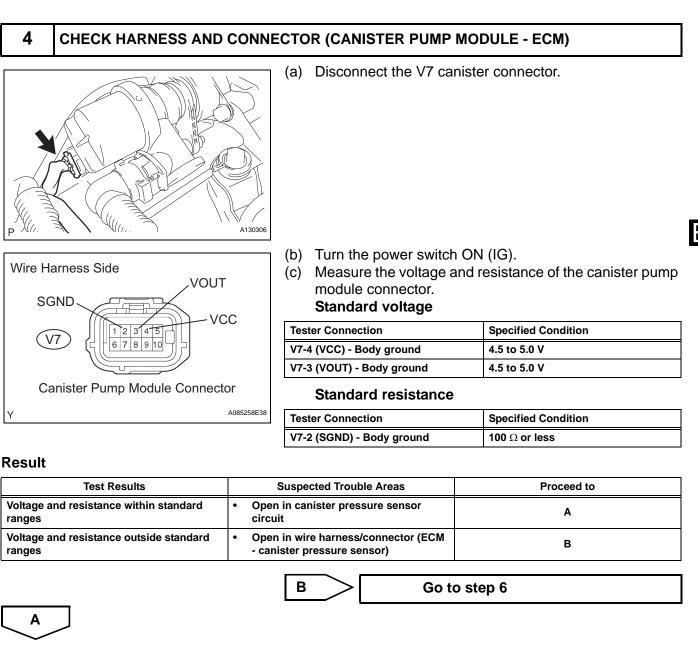
(a) Disconnect the V7 canister connector.(b) Disconnect the E7 ECM connector.

(c) Measure the resistance between the PPMP (E7-30) terminal of the ECM connector and the body ground.

Go to step 6

# Result

| Test Results          | Suspected Trouble Areas                                                                      | Proceed to |
|-----------------------|----------------------------------------------------------------------------------------------|------------|
| 10 k $\Omega$ or more | Short in canister pressure sensor<br>circuit                                                 | A          |
| 10 k $\Omega$ or less | <ul> <li>Short in wire harness/connector (ECM         - canister pressure sensor)</li> </ul> | В          |

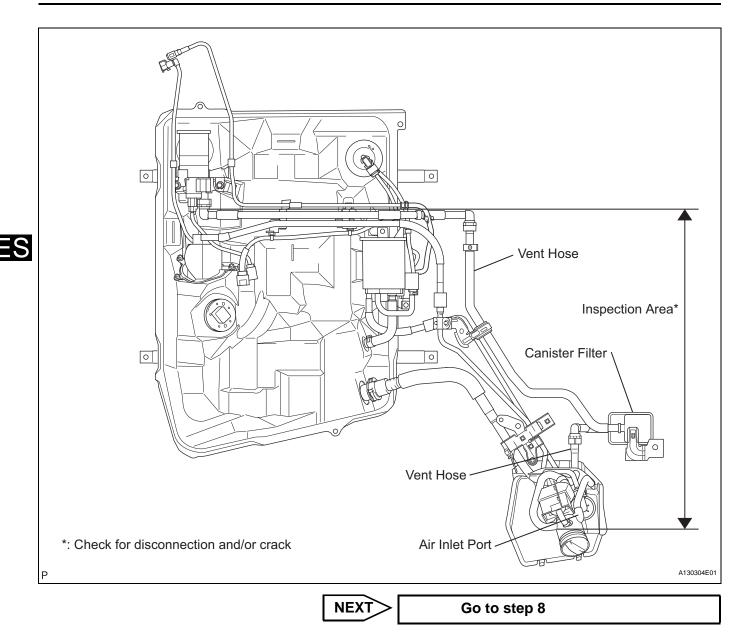

В



PPMP

**ECM** Connector

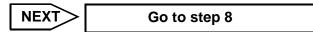
A065744E68




# REPLACE CANISTER ASSEMBLY

5

(a) Replace the canister assembly (see page EC-9). NOTICE:


When replacing the canister, check the canister pump module interior and related pipes for water, fuel or other liquids. If liquids are present, check for disconnections and/or cracks in the following: 1) the pipe from the air inlet port to the canister pump module; 2) the canister filter; and 3) the fuel tank vent hose.



### 6 REPAIR OR REPLACE HARNESS OR CONNECTOR

### HINT:

If the exhaust tailpipe has been removed, go to the next step before reinstalling it.



7 REPLACE ECM

(a) Replace the ECM (see page ES-469).

# 8 CHECK WHETHER DTC OUTPUT RECURS (AFTER REPAIR)

- (b) Turn the power switch ON (IG) and turn the intelligent tester ON.
- (c) Wait for at least 60 seconds.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / PENDING CODES. HINT:

If no pending DTC is displayed on the intelligent tester, the repair has been successfully completed.



COMPLETED



| DTC | P0455 | Evaporative Emission Control System Leak<br>Detected (Gross Leak)      |
|-----|-------|------------------------------------------------------------------------|
| DTC | P0456 | Evaporative Emission Control System Leak<br>Detected (Very Small Leak) |

# **DTC SUMMARY**

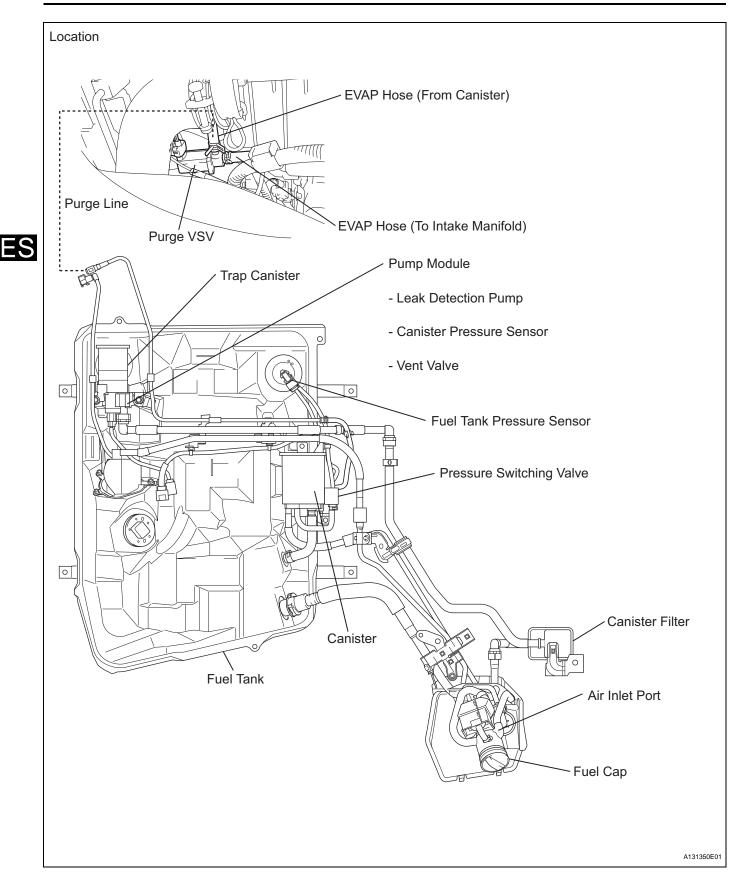
|   | DTC No. | Monitoring Items | Malfunction<br>Detection<br>Conditions                                                                                                                                                                                                                                                                                                                        | Trouble Area                                                                                                                                                                                                                                                                    | Detection Timing          | Detection Logic |
|---|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------|
| S | P0455   | EVAP gross leak  | Leak detection pump<br>creates negative<br>pressure (vacuum) in<br>EVAP system and<br>EVAP system<br>pressure measured.<br>0.02 inch leak<br>criterion measured at<br>start and at end of<br>leak check.<br>If stabilized pressure<br>higher than [second<br>0.02 inch leak<br>criterion x 0.15], ECM<br>determines that<br>EVAP system has<br>large leakage. | <ul> <li>Fuel cap (loose)</li> <li>Leakage from<br/>EVAP line<br/>(canister - fuel<br/>tank)</li> <li>Leakage from<br/>EVAP line (purge<br/>VSV - canister)</li> <li>Canister pump<br/>module</li> <li>Leakage from<br/>fuel tank</li> <li>Leakage from<br/>canister</li> </ul> | While power switch<br>OFF | 2 trip          |
|   | P0456   | EVAP small leak  | Leak detection pump<br>creates negative<br>pressure (vacuum) in<br>EVAP system and<br>EVAP system<br>pressure measured.<br>0.02 inch leak<br>criterion measured at<br>start and at end of<br>leak check.<br>If stabilized pressure<br>higher than second<br>0.02 inch leak<br>criterion, ECM<br>determines that<br>EVAP system has<br>small leakage.          | Same as above                                                                                                                                                                                                                                                                   | While power switch<br>OFF | 2 trip          |

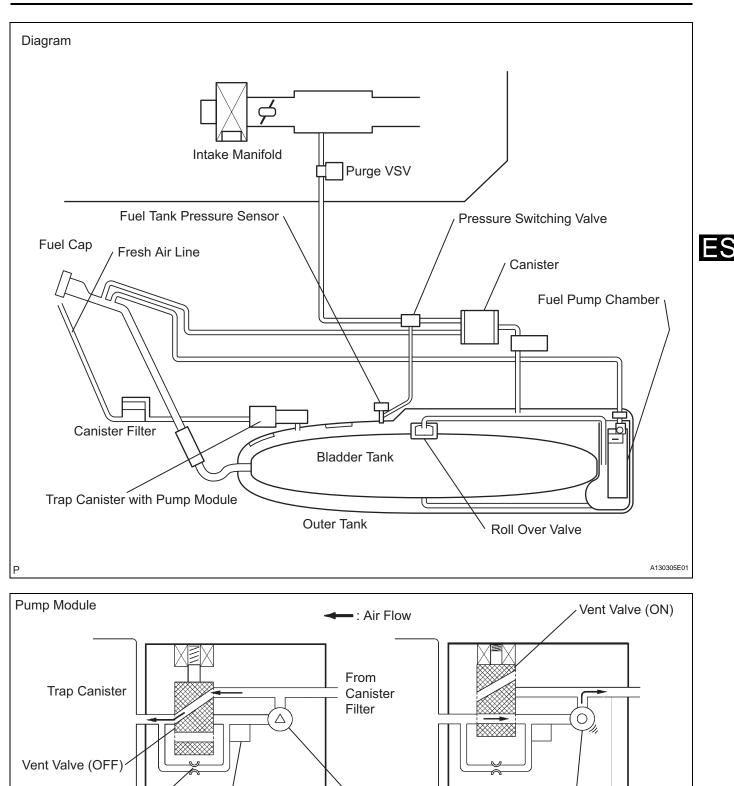
# DESCRIPTION

### NOTICE:

In this vehicle's EVAP system, turning ON the vent valve does not seal off the EVAP system. To check for leaks in the EVAP system, disconnect the air inlet vent hose and apply pressure from the atmosphere side of the canister.

While the engine is running, if a predetermined condition (closed loop, etc.) is met, the purge VSV is opened by the ECM and stored fuel vapors in the canister are purged to the intake manifold. The ECM changes the duty cycle ratio of the purge VSV to control purge flow volume.


The purge flow volume is also determined by the intake manifold pressure. Atmospheric pressure is allowed into the canister through the vent valve to ensure that the purge flow is maintained when the negative pressure (vacuum) is applied to the canister.


#### Key-off monitor

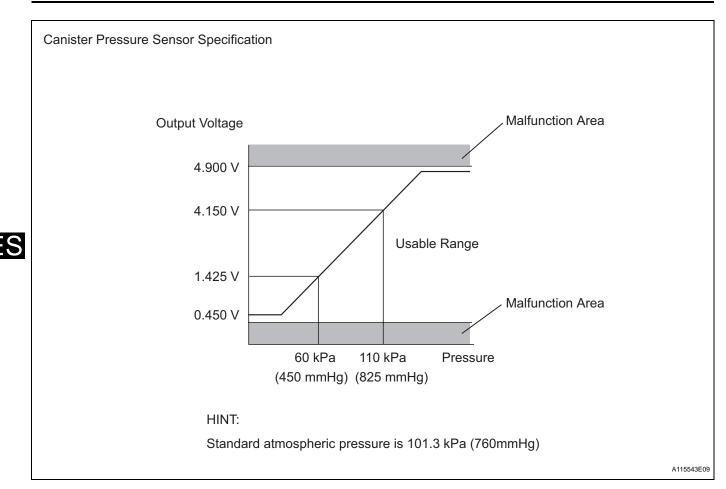
This monitor checks for Evaporative Emission (EVAP) system leaks and canister pump module malfunctions. The monitor starts 5 hours\* after the power switch is turned OFF. More than 5 hours are required to allow the fuel to cool down to stabilize the Fuel Tank Pressure (FTP), thus making the EVAP system monitor more accurate.

The leak detection pump creates negative pressure (vacuum) in the EVAP system and the pressure is measured. Finally, the ECM monitors for leaks from the EVAP system and malfunctions in both the canister pump module and purge VSV, based on the EVAP pressure. HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.






Leak Detection Pump (OFF)

**Reference Orifice** 

Pressure Sensor



Leak Detection Pump (ON)

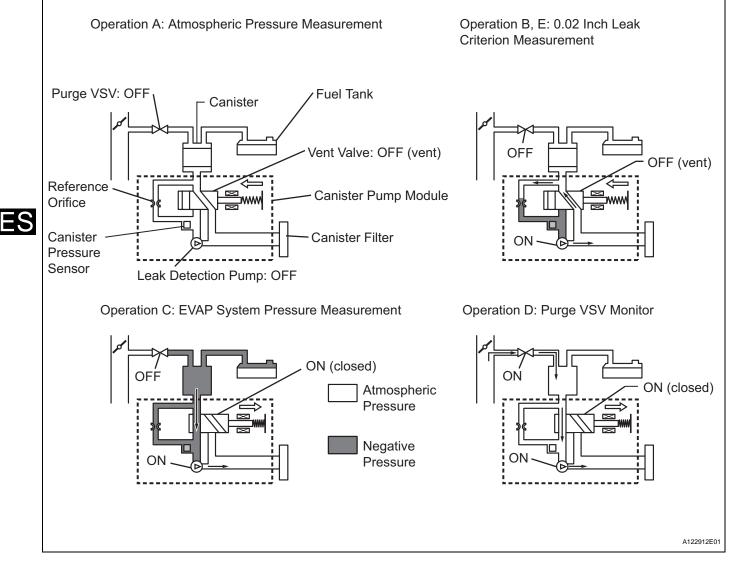


| Components                         | Operations                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canister, Trap canister            | Contains activated charcoal to absorb EVAP generated in fuel tank.                                                                                                                                                                                                                                                                                |
| Cut-off valve                      | Located in fuel tank. Valve floats and closes when fuel tank 100% full.                                                                                                                                                                                                                                                                           |
| Purge Vacuum Switching Valve (VSV) | Opens or closes line between canister and intake manifold. ECM uses<br>purge VSV to control EVAP purge flow. In order to discharge EVAP<br>absorbed by canister to intake manifold, ECM opens purge VSV.<br>EVAP discharge volume to intake manifold controlled by purge VSV<br>duty cycle ratio (current-carrying time) (open: ON; closed: OFF). |
| Roll-over valve                    | Located in fuel tank. Valve closes by its own weight when vehicle overturns to prevent fuel from spilling out.                                                                                                                                                                                                                                    |
| Soak timer                         | Built into ECM. To ensure accurate EVAP monitor, measures 5 hours (+-15 min) after power switch OFF. This allows fuel to cool down, stabilizing Fuel Tank Pressure (FTP). When approximately 5 hours elapsed, ECM activates.                                                                                                                      |
| Pressure switching valve           | The pressure switching valve located on the canister is used to detect<br>leakage from the bladder tank into the fuel tank. The valve opens<br>during the bladder tank leak check. Then, the fuel tank's fuel vapor<br>flows to the intake manifold without passing the canister.                                                                 |
| Pump module                        | Consists of (a) to (d) below. Pump module cannot be disassembled.                                                                                                                                                                                                                                                                                 |
| (a) Vent valve                     | Vents and closes EVAP system. When ECM turns valve ON, EVAP system closed. When ECM turns valve OFF, EVAP system vented. Negative pressure (vacuum) created in EVAP system to check for EVAP leaks by closing purge VSV, turning vent valve ON (closed) and operating leak detection pump (refer to fig. 1).                                      |
| (b) Canister pressure sensor       | Indicates pressure as voltage. ECM supplies regulated 5 V to canister pressure sensor, and uses feedback from sensor to monitor EVAP system pressure (refer to fig. 2).                                                                                                                                                                           |
| (c) Leak detection pump            | Creates negative pressure (vacuum) in EVAP system for leak check.                                                                                                                                                                                                                                                                                 |

| Components | Operations                                                                                                                                                                                                                                               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Has opening with 0.02 inch diameter. Vacuum produced through<br>orifice by closing purge VSV, turning vent valve OFF and operating<br>leak detection pump to monitor 0.02 inch leak criterion. 0.02 inch leak<br>criterion indicates small leak of EVAP. |

# **MONITOR DESCRIPTION**

5 hours\* after the power switch is turned OFF, the leak detection pump creates negative pressure (vacuum) in the EVAP system. The ECM monitors for leaks and actuator malfunctions based on the EVAP pressure.

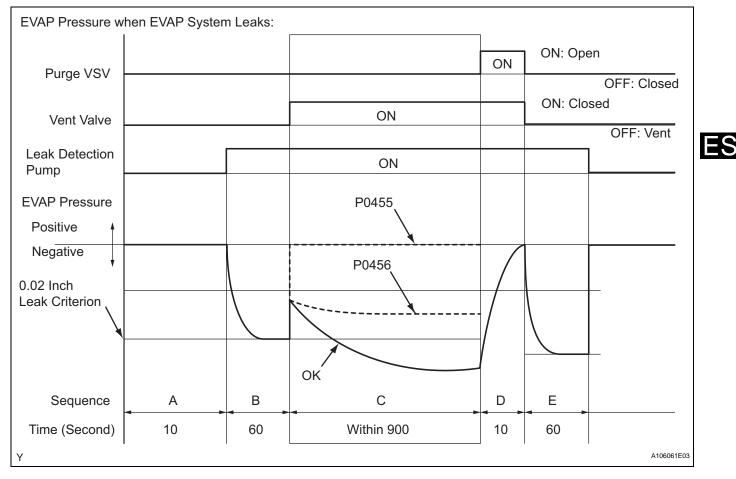

HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.

| Sequence | Operations                                  | Descriptions                                                                                                                                                                                                                                                                                                                        | Duration     |
|----------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| -        | ECM activation                              | Activated by soak timer 5, 7 or 9.5 hours after power switch OFF.                                                                                                                                                                                                                                                                   | -            |
| A        | Atmospheric pressure<br>measurement         | Vent valve turned OFF (vent) and<br>EVAP system pressure measured<br>by ECM in order to register<br>atmospheric pressure.<br>If pressure in EVAP system not<br>between 70 kPa and 110 kPa<br>(525 mmHg and 825 mmHg),<br>ECM cancels EVAP system<br>monitor.                                                                        | 10 seconds   |
| В        | First 0.02 inch leak criterion measurement  | In order to determine 0.02 inch<br>leak criterion, leak detection<br>pump creates negative pressure<br>(vacuum) through reference<br>orifice and then ECM checks if<br>leak detection pump and vent<br>valve operate normally.                                                                                                      | 60 seconds   |
| С        | EVAP system pressure<br>measurement         | Vent valve turned ON (closed) to<br>shut EVAP system.<br>Negative pressure (vacuum)<br>created in EVAP system, and<br>EVAP system pressure then<br>measured.<br>Write down measured value as it<br>will be used in leak check.<br>If EVAP pressure does not<br>stabilize within 900 seconds,<br>ECM cancels EVAP system<br>monitor. | 900 seconds* |
| D        | Purge VSV monitor                           | Purge VSV opened and then<br>EVAP system pressure measured<br>by ECM.<br>Large increase indicates normal.                                                                                                                                                                                                                           | 10 seconds   |
| E        | Second 0.02 inch leak criterion measurement | After second 0.02 inch leak<br>criterion measurement, leak<br>check performed by comparing<br>first and second 0.02 inch leak<br>criterion.<br>If stabilized system pressure<br>higher than second 0.02 inch leak<br>criterion, ECM determines that<br>EVAP system leaking.                                                         | 60 seconds   |
| -        | Final check                                 | Atmospheric pressure measured<br>and then monitoring result<br>recorded by ECM.                                                                                                                                                                                                                                                     | -            |

\*: If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.

#### ES-272




#### 1. P0455: EVAP gross leak

In operation C, the leak detection pump creates negative pressure (vacuum) in the EVAP system and the EVAP system pressure is measured. If the stabilized system pressure is higher than [second 0.02 inch leak criterion x 0.15] (near atmospheric pressure), the ECM determines that the EVAP system has a large leakage, illuminates the MIL and sets the DTC (2 trip detection logic).

### 2. P0456: EVAP very small leak

In operation C, the leak detection pump creates negative pressure (vacuum) in the EVAP system and the EVAP system pressure is measured. If the stabilized system pressure is higher than the second 0.02 inch leak criterion, the ECM determines that the EVAP system has a small leakage, illuminates the MIL and sets the DTC (2 trip detection logic).



# **MONITOR STRATEGY**

| Required Sensors/Components | Purge VSV and canister pump module |
|-----------------------------|------------------------------------|
| Frequency of Operation      | Once per driving cycle             |
| Duration                    | Maximum 15 seconds                 |
| MIL Operation               | 2 driving cycles                   |
| Sequence of Operation       | None                               |

# **TYPICAL ENABLING CONDITIONS**

| Atmospheric pressure 70 to 110 kPa (525 to 825 mmHg) |
|------------------------------------------------------|
|------------------------------------------------------|

| Battery voltage                                                 | 10.5 V or higher           |
|-----------------------------------------------------------------|----------------------------|
| Vehicle speed                                                   | Less than 4 km/h (2.5 mph) |
| Power switch                                                    | OFF                        |
| Time after key off                                              | 5 or 7 or 9.5 hours        |
| Purge VSV                                                       | Not operated by scan tool  |
| Vent valve                                                      | Not operated by scan tool  |
| Leak detection pump                                             | Not operated by scan tool  |
| Both of the following conditions 1 and 2 are met before key off | -                          |
| 1. Duration that vehicle has been driven                        | 5 minutes or more          |
| 2. EVAP purge operation                                         | Performed                  |
| ECT                                                             | 4.4 to 35°C (40 to 95°F)   |
| IAT                                                             | 4.4 to 35°C (40 to 95°F)   |

#### 1. Key-off monitor sequence 1 to 8 1. Atmospheric pressure measurement

| Next sequence is run if the following condition is met | -                                      |
|--------------------------------------------------------|----------------------------------------|
| Atmospheric pressure change                            | Within 0.3 kPa (2.25 mmHg) in 1 second |

#### 2. First reference pressure measurement

| Next sequence is run if the following conditions are met      | -                                    |
|---------------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement start | -1 kPa (-7.5 mmHg) or lower          |
| Reference pressure                                            | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                            | Saturated within 60 seconds          |

#### 3. Vent valve stuck closed check

| Next sequence is run if the following condition is met | -                           |
|--------------------------------------------------------|-----------------------------|
| EVAP pressure change after vent valve is ON            | 0.3 kPa (2.25 mmHg) or more |

#### 4. Vacuum introduction

| Next sequence is run if the following condition is met | -                            |
|--------------------------------------------------------|------------------------------|
| EVAP pressure                                          | Saturated within 900 seconds |

#### 5. Purge VSV stuck closed check

| Next sequence is run if the following condition is met | -                           |
|--------------------------------------------------------|-----------------------------|
| EVAP pressure change after purge valve is open         | 0.3 kPa (2.25 mmHg) or more |

#### 6. Second reference pressure measurement

| Next sequence is run if the following conditions are met | -                                    |
|----------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement  | -1 kPa (-7.5 mmHg) or lower          |
| Reference pressure                                       | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                       | Saturated within 60 seconds          |
| Reference pressure difference between first and second   | Less than 0.7 kPa (5.25 mmHg)        |

#### 7. Leak check

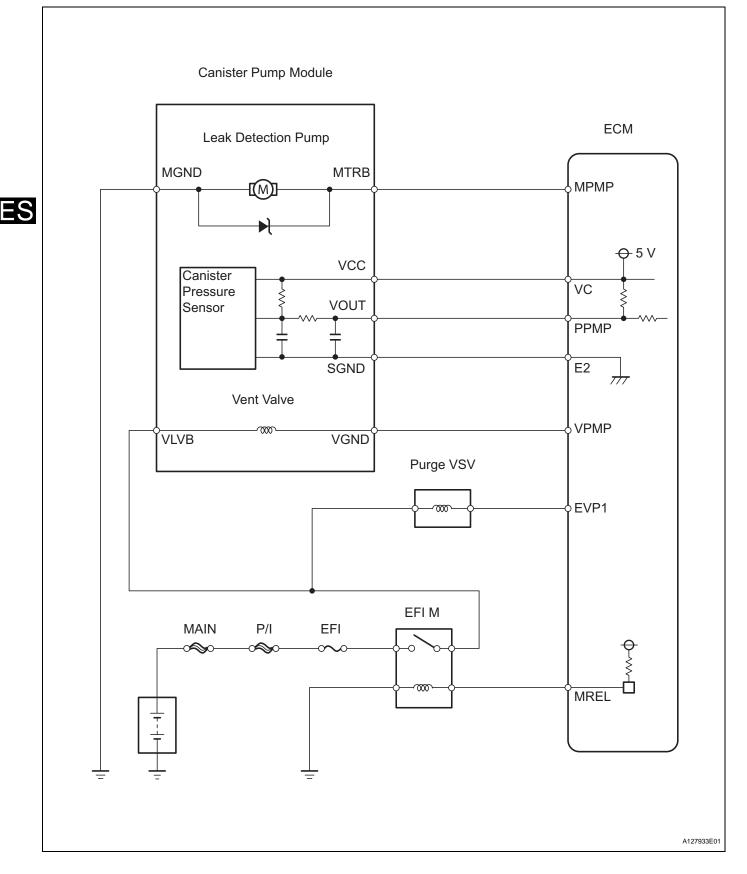
| Next sequence is run if the following condition is met | -                                    |
|--------------------------------------------------------|--------------------------------------|
| EVAP pressure when vacuum introduction is complete     | Lower than second reference pressure |

#### 8. Atmospheric pressure measurement

| EVAP monitor is complete if the following condition is met | -                          |
|------------------------------------------------------------|----------------------------|
| Atmospheric pressure difference between sequence 1 and 8   | Within 0.3 kPa (2.25 mmHg) |

# **TYPICAL MALFUNCTION THRESHOLDS**

"Saturated" indicates that the EVAP pressure change is less than 0.1 kPa (0.75 mmHg) in 30 seconds.


### P0455: EVAP gross leak

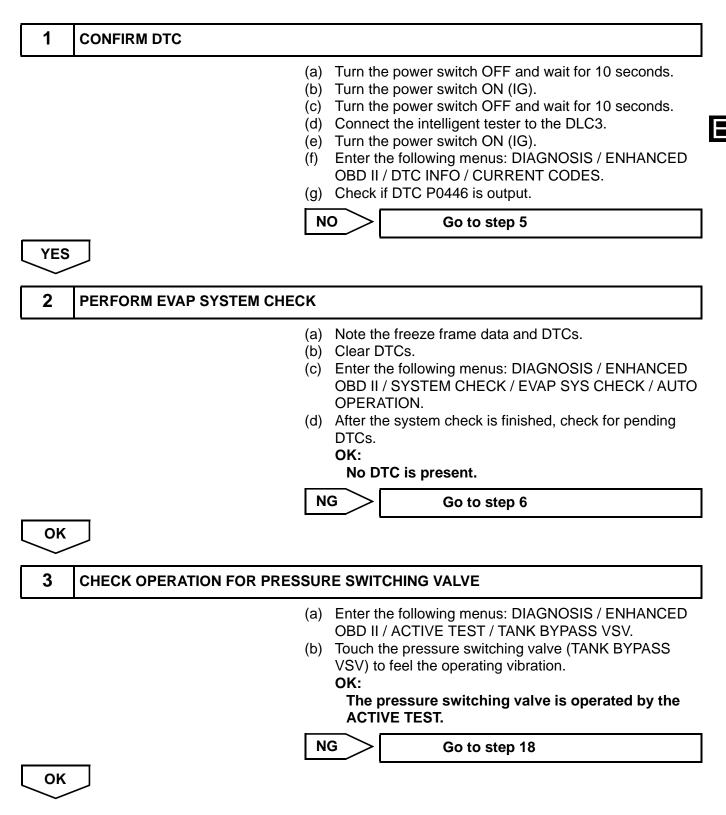
| FTP when vacuum introduction complete         Higher than reference pressure x 0.15 |                                                              |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------|
| P0456: EVAP small leak                                                              |                                                              |
| FTP when vacuum introduction complete                                               | Between "reference pressure" and "reference pressure x 0.15" |

# **MONITOR RESULT**

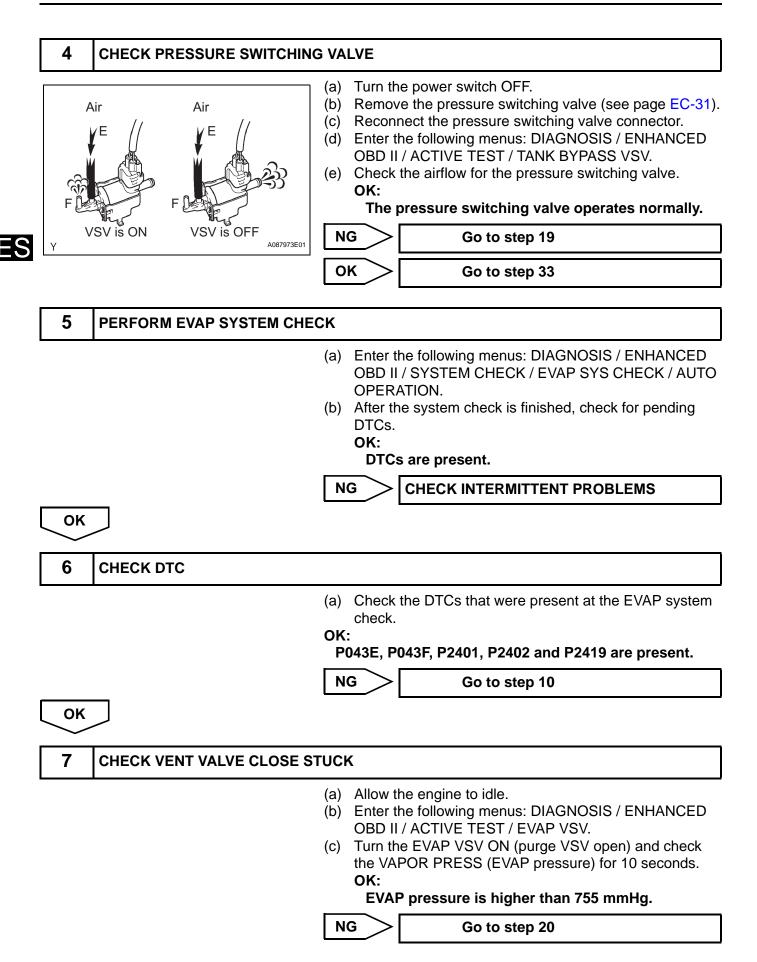
Refer to CHECKING MONITOR STATUS (see page ES-15).

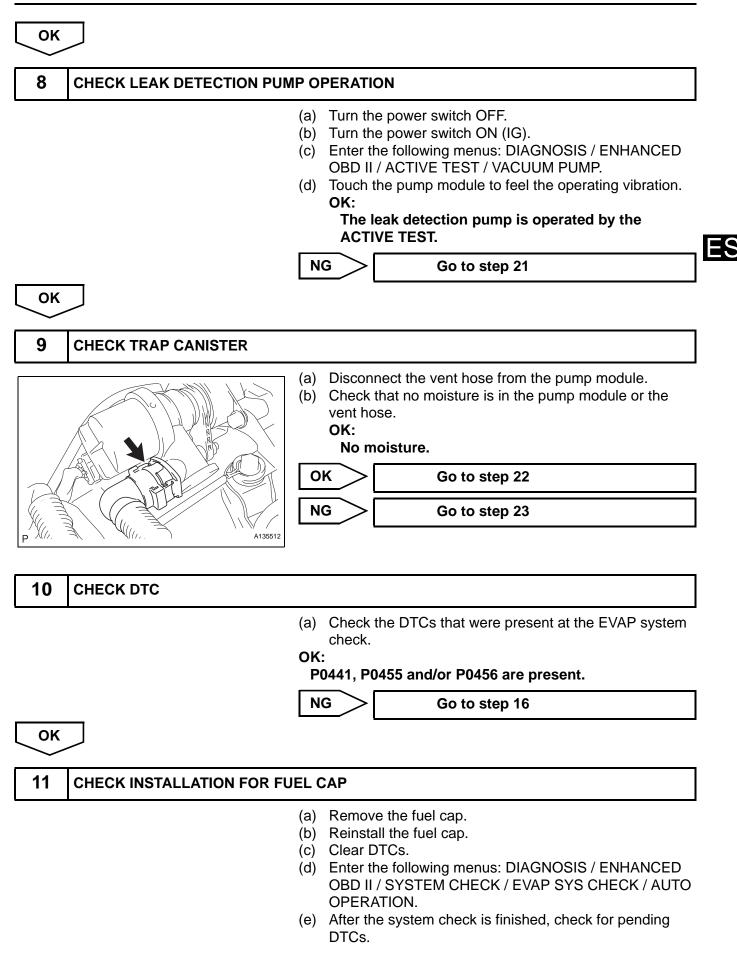
### WIRING DIAGRAM

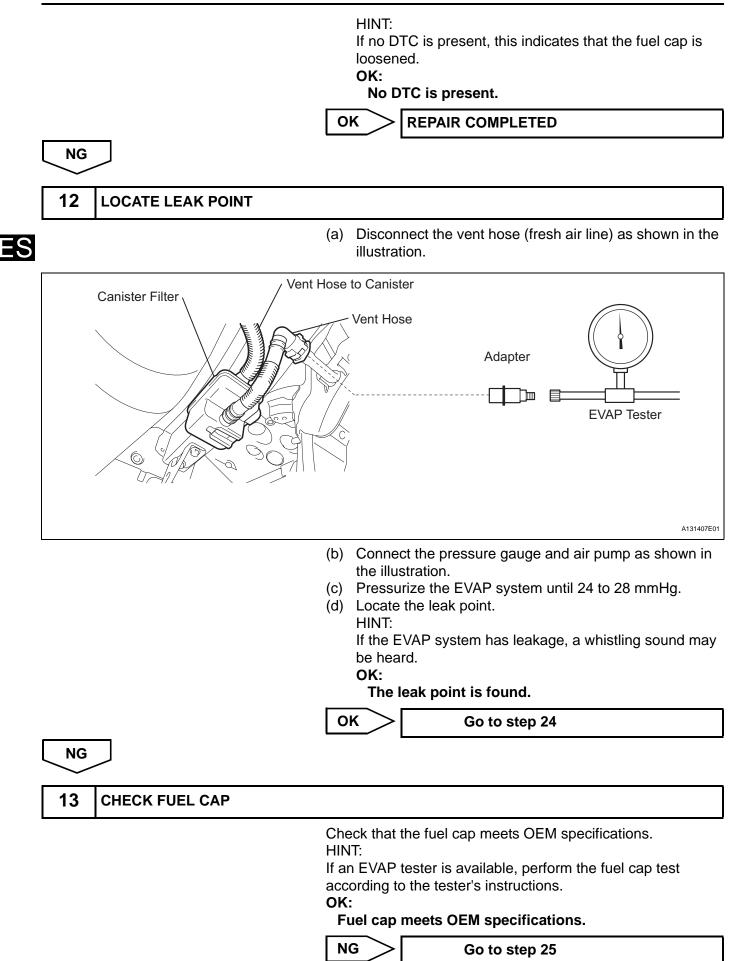


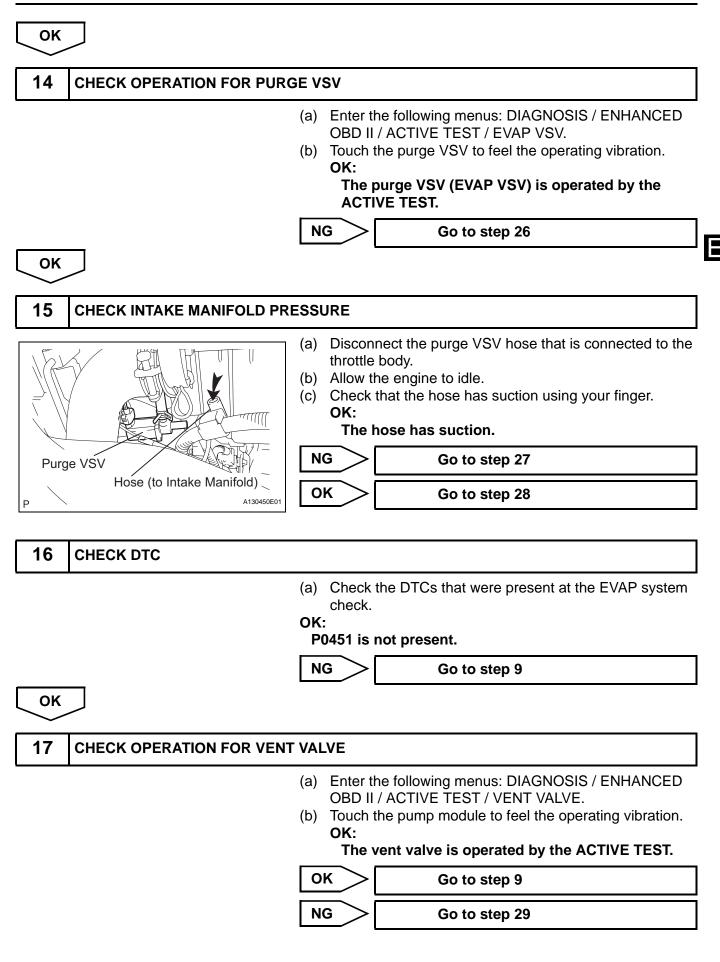

## **INSPECTION PROCEDURE**

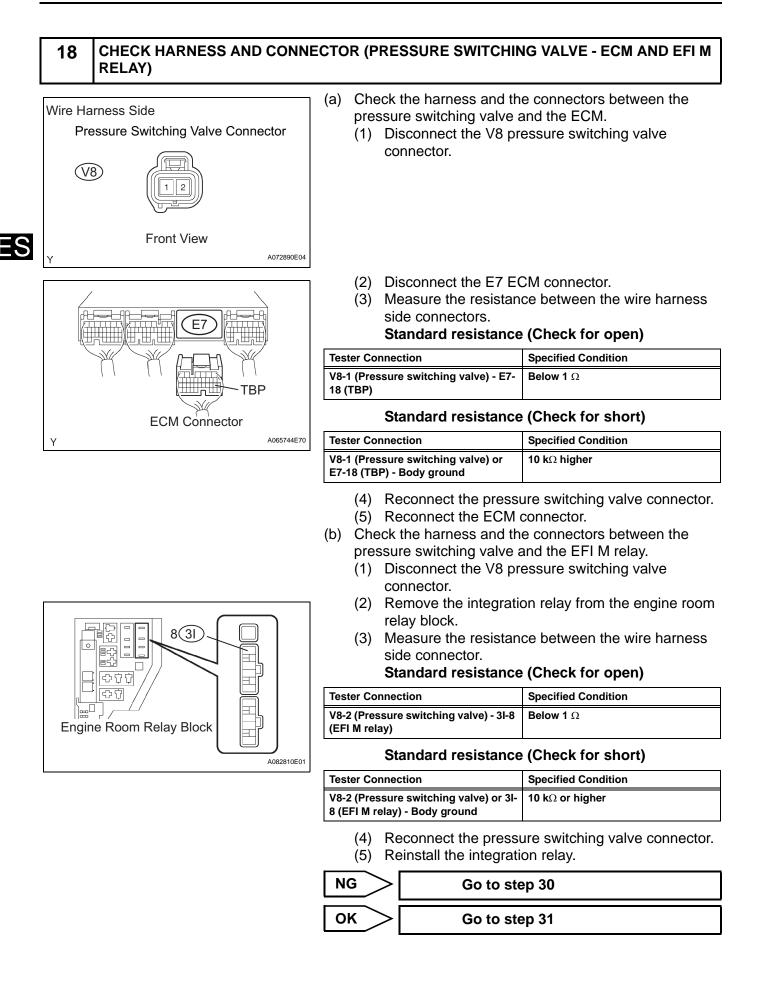
NOTICE:

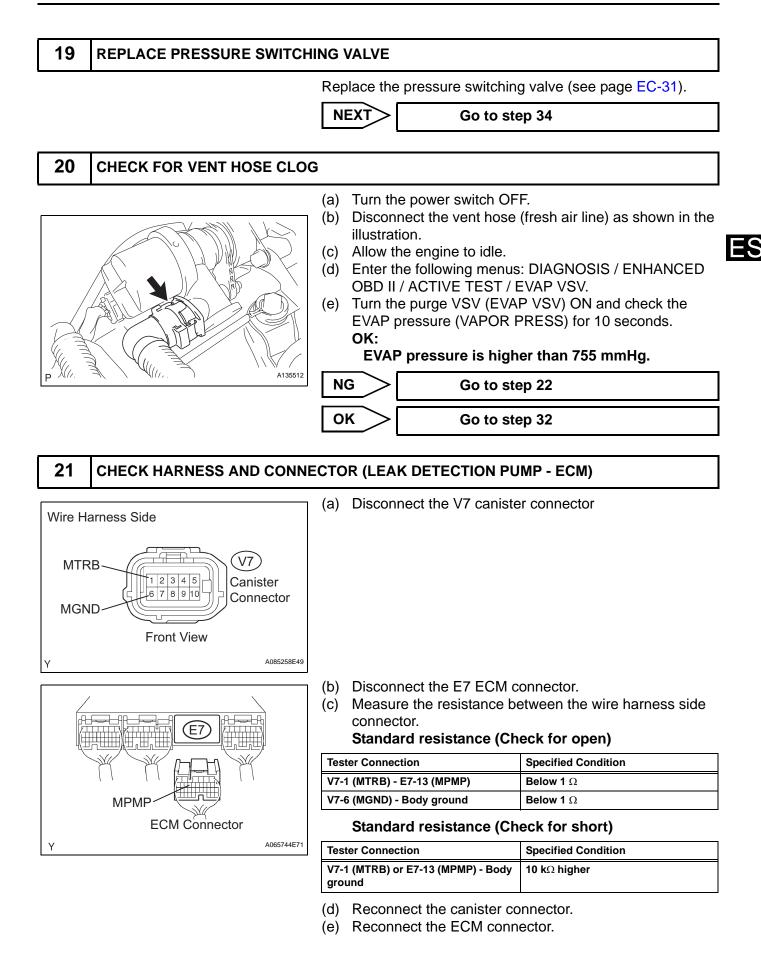

The intelligent tester is required to conduct the following diagnostic troubleshooting procedure.


HINT:

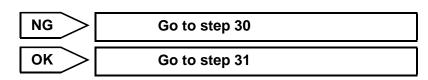

- Using the intelligent tester monitor results enable the EVAP system to be confirmed.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine conditions
  when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the
  vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or
  rich, and other data from the time the malfunction occurred.





#### ES-278









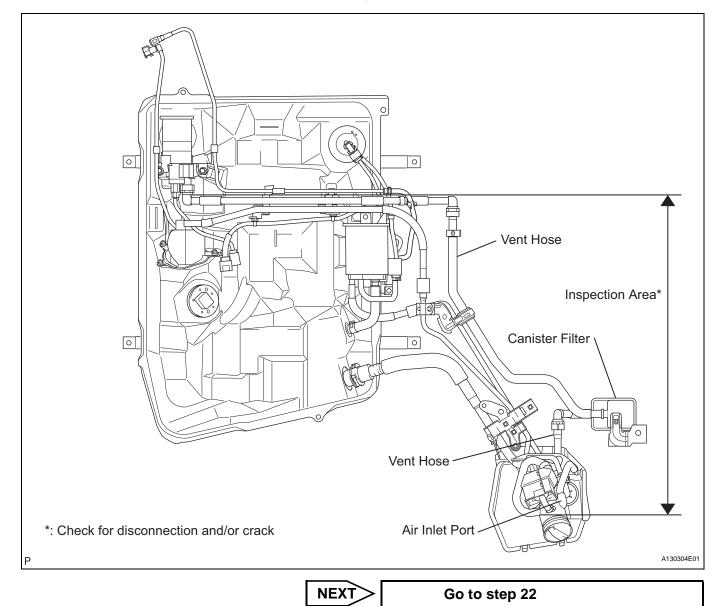


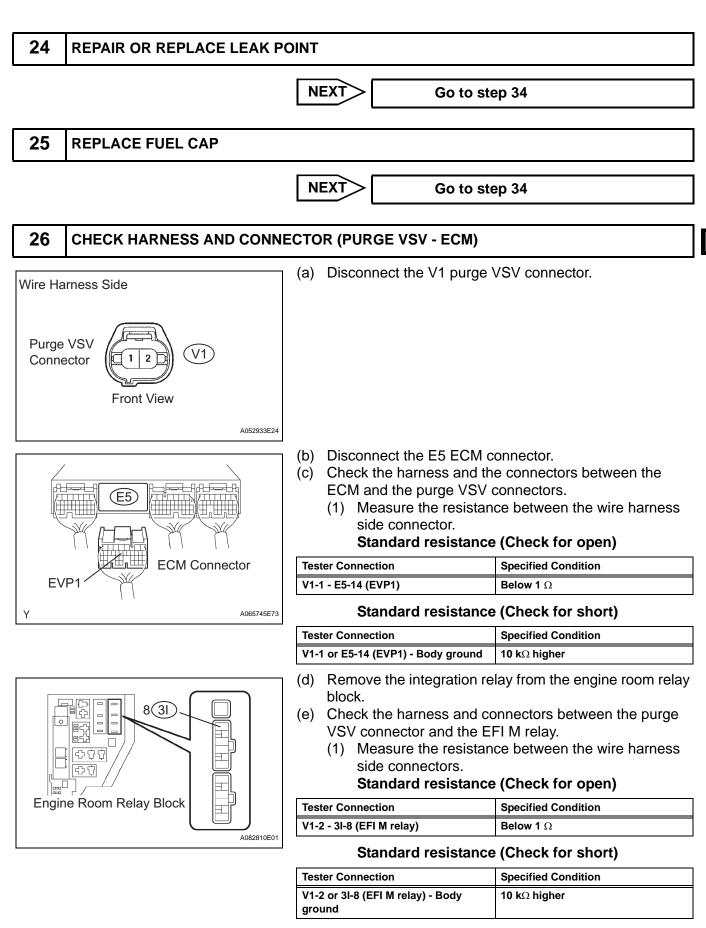

23



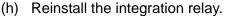


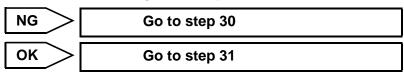
Replace the trap canister with pump module (see page EC-17).





Go to step 34

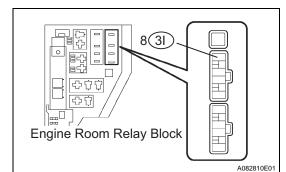
ES


### CHECK FOR VENT HOSE DAMAGE


Check for hose damage as shown in the illustration. If necessary, replace the vent hose.







- (f) Reconnect the purge VSV connector.
- (g) Reconnect the ECM connector.







| Tester Connection                            | Specified Condition  |
|----------------------------------------------|----------------------|
| V7-8 (VGND) or E7-26 (VPMP) - Body<br>ground | 10 k $\Omega$ higher |



- (d) Remove the integration relay from the engine room relay block.
- (e) Check the harness and connectors between the canister connector and the EFI M relay.
  - (1) Measure the resistance between the wire harness side connectors.

### Standard resistance (Check for open)

| Tester Connection                | Specified Condition |
|----------------------------------|---------------------|
| V7-9 (VLVB) - 3I-8 (EFI M relay) | Below 1 Ω           |

### Standard resistance (Check for short)

| Tester Connection                                  | Specified Condition  |
|----------------------------------------------------|----------------------|
| V7-9 (VLVB) or 3I-8 (EFI M relay) -<br>Body ground | 10 k $\Omega$ higher |

- Reconnect the canister connector. (f)
- (g) Reconnect the ECM connector.
- (h) Reinstall the integration relay.

| NG | Go to step 30 |  |
|----|---------------|--|
| ОК | Go to step 31 |  |

#### 30 **REPAIR OR REPLACE HARNESS AND CONNECTOR**

NEXT

Go to step 34

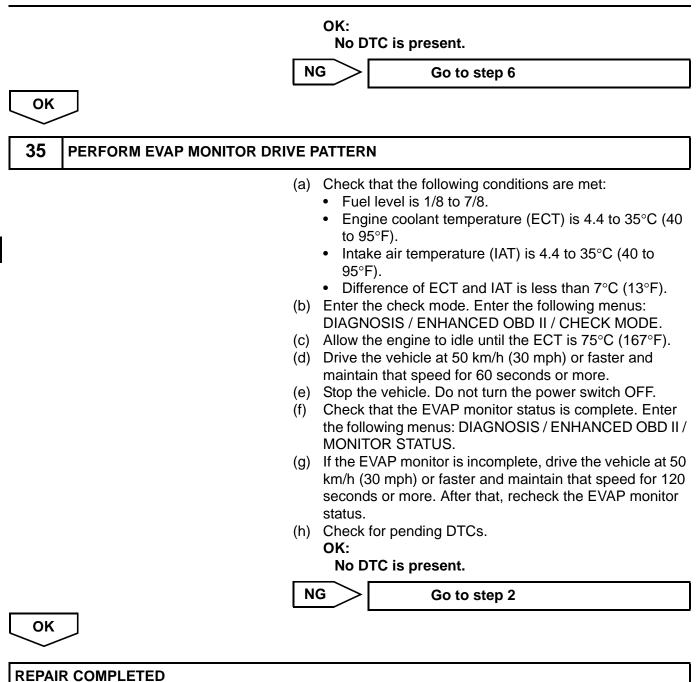
31 **REPLACE ECM** 

Replace the ECM (see page ES-469).

NEXT

Go to step 34

#### 32 CHECK AND REPLACE VENT HOSE OR CANISTER FILTER


NEXT

Go to step 34

#### 33 REPLACE HOSE (PRESSURE SWITCHING VALVE AND FUEL TANK)

| NEXT |                           |                                                                                                                                                  |
|------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 34   | PERFORM EVAP SYSTEM CHECK |                                                                                                                                                  |
|      | (a)<br>(b)                | Turn the power switch ON (IG).<br>Enter the following menus: DIAGNOSIS / ENHANCED<br>OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO<br>OPERATION. |

(c) After the system check is finished, check for pending DTCs.



# DTC

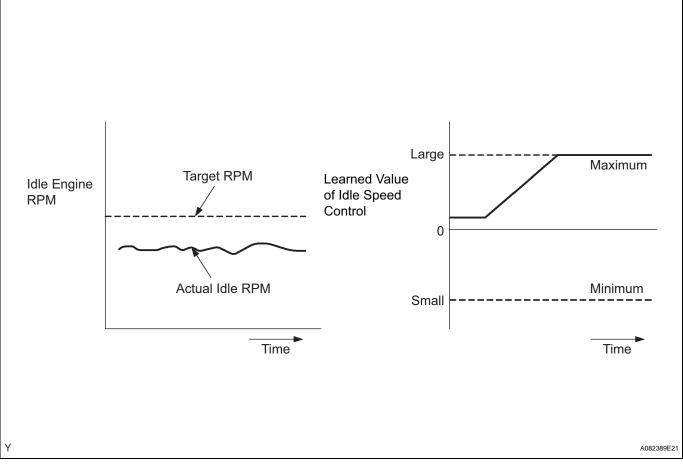
# P0505

# Idle Control System Malfunction

# MONITOR DESCRIPTION

The idle speed is controlled by the Electronic Throttle Control System (ETCS).

The ETCS is composed of the throttle motor which operates the throttle valve, and the throttle position sensor which detects the opening angle of the throttle valve.


The ECM controls the throttle motor to provide the proper throttle valve opening angle to obtain the target idle speed.

The ECM regulates the idle speed by opening and closing the throttle valve using the ETCS. If the actual idle RPM varies more than a specified amount or a learned value of the idle speed control remains at the maximum or minimum five times or more during a trip, the ECM concludes that there is a problem in the idle speed control ECM function. The ECM will turn on the MIL and a DTC is set. Example:

If the actual idle RPM varies from the target idle RPM by more than 200 (\*1) rpm five times during a drive cycle, the ECM will turn on the MIL and a DTC is set. HINT:

ES

\*1: RPM threshold varies depending on engine loads.



| DTC No. | DTC Detection Condition                                                               | Trouble Area                                                                                                                 |
|---------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| P0505   | Idle speed continues to vary greatly from<br>target speed<br>(1 trip detection logic) | <ul> <li>Electric throttle control system</li> <li>Air induction system</li> <li>PCV hose connection</li> <li>ECM</li> </ul> |

# **MONITOR STRATEGY**

| Related DTCs | P0505: Idle air control malfunction (Functional check) |
|--------------|--------------------------------------------------------|
|--------------|--------------------------------------------------------|

| Required sensors/components | Main:<br>Crankshaft position sensor<br>Related:<br>Vehicle speed sensor, engine coolant temperature sensor |
|-----------------------------|------------------------------------------------------------------------------------------------------------|
| Frequency of operation      | Once per driving cycle                                                                                     |
| Duration                    | 10 minutes                                                                                                 |
| MIL operation               | 2 driving cycles                                                                                           |
| Sequence of operation       | None                                                                                                       |

# **TYPICAL ENABLING CONDITIONS**

| TI | he monitor will run whenever the following DTCs are not present | None    |
|----|-----------------------------------------------------------------|---------|
| E  | ingine                                                          | Running |

# ES

# **TYPICAL MALFUNCTION THRESHOLDS**

| Following conditions are met:<br>(during idling after driving for more than 6.2 mph (10 km/h) per cycle) | A, B and C                               |
|----------------------------------------------------------------------------------------------------------|------------------------------------------|
| A. Either of following conditions is met:                                                                | 1 or 2                                   |
| 1. Deviation of engine speed<br>(when shift position N or A/C ON)                                        | Less than -100 rpm, or more than 200 rpm |
| 2. Deviation of engine speed<br>(when shift position D or A/C OFF)                                       | Less than -100 rpm, or more than 150 rpm |
| B. IAC flow rate (learned value)                                                                         | 0.6 L/sec or less or 4.5 L/sec or more   |
| C. Number of detection                                                                                   | 5 times/trip                             |

# **INSPECTION PROCEDURE**

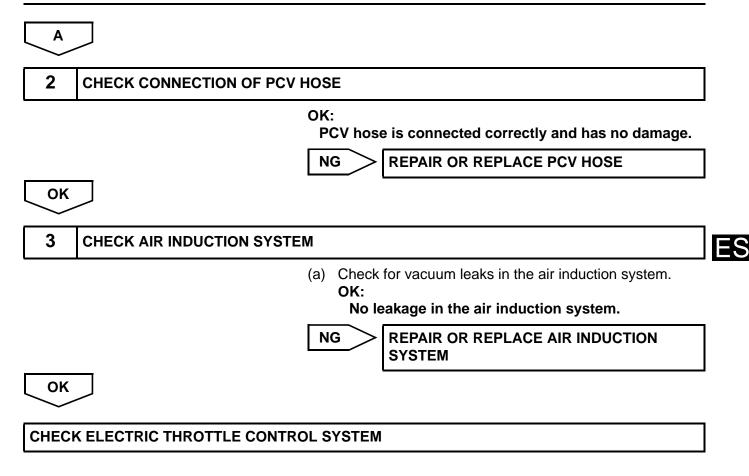
#### HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1

#### CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P0505)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result


| Display (DTC output) | Proceed to |
|----------------------|------------|
| P0505                | Α          |
| P0505 and other DTCs | В          |

#### HINT:

If any other codes besides P0505 are output, perform troubleshooting for those DTCs first.

GO TO RELEVANT DTC CHART





| пΤ | ~ |
|----|---|
| וט | し |

System Voltage

# MONITOR DESCRIPTION

P0560

The battery supplies electricity to the ECM even if the power switch is OFF. This electricity allows the ECM to store DTC history, freeze frame data, fuel trim values, and other data. If the battery voltage falls below a minimum level, the ECM will conclude that there is a fault in the power supply circuit. The next time the engine starts, the ECM will turn on the MIL and a DTC will be set.

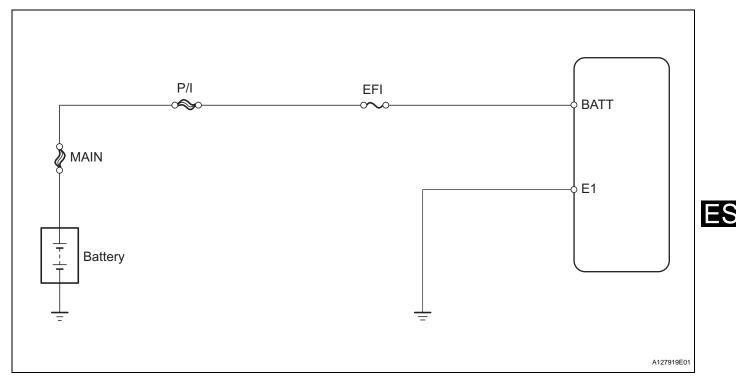
| DTC No. | DTC Detection Condition              | Trouble Area                                                       |
|---------|--------------------------------------|--------------------------------------------------------------------|
| P0560   | Open in back-up power source circuit | <ul><li>Open in back-up power source circuit</li><li>ECM</li></ul> |

HINT:

If DTC P0560 is present, the ECM will not store other DTCs.

# **MONITOR STRATEGY**

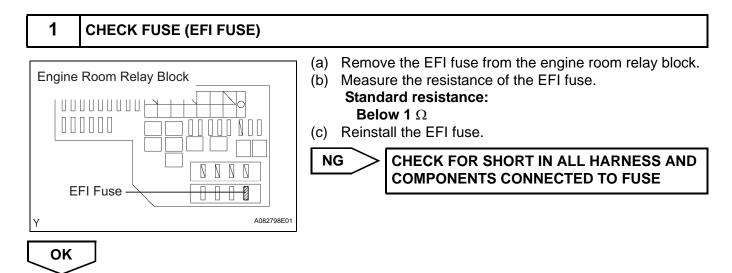
| Related DTCs                       | P0560: System voltage malfunction |
|------------------------------------|-----------------------------------|
| Required sensors/components (main) | ECM                               |
| Frequency of operation             | Continuous                        |
| Duration                           | 3 seconds                         |
| MIL operation                      | Immediately                       |
| Sequence of operation              | None                              |

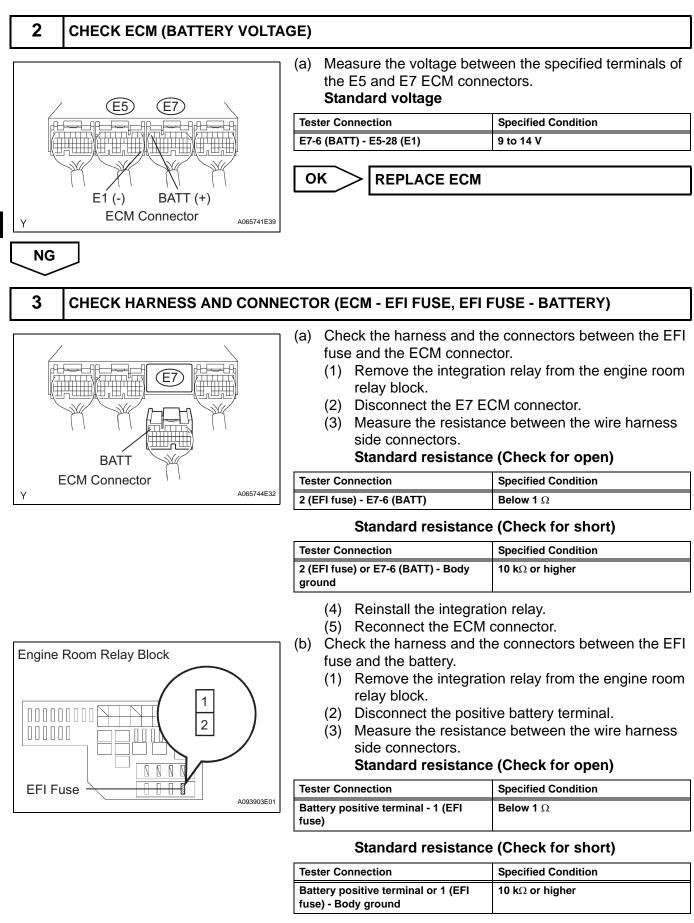

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None        |
|------------------------------------------------------------------|-------------|
| Stand-by RAM                                                     | Initialized |

# **TYPICAL MALFUNCTION THRESHOLDS**

| Battery voltage | Less than 3.5 V |
|-----------------|-----------------|


#### WIRING DIAGRAM




#### **INSPECTION PROCEDURE**

#### HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.





(4) Reinstall the integration relay.

(5) Reconnect the positive battery terminal.



REPAIR OR REPLACE HARNESS AND CONNECTOR

ОК

#### CHECK AND REPLACE ENGINE ROOM RELAY BLOCK

ES

| DTC | P0604 | Internal Control Module Random Access Mem-<br>ory (RAM) Error |
|-----|-------|---------------------------------------------------------------|
| DTC | P0606 | ECM / PCM Processor                                           |
| DTC | P0607 | Control Module Performance                                    |
| DTC | P0657 | Actuator Supply Voltage Circuit / Open                        |

### **MONITOR DESCRIPTION**

The ECM continuously monitors its internal memory status, internal circuits, and output signals to the throttle actuator. This self-check ensures that the ECM is functioning properly. If any malfunction is detected, the ECM will set the appropriate DTC and illuminate the MIL.

The ECM memory status is diagnosed by internal "mirroring" of the main CPU and the sub CPU to detect random access memory (RAM) errors. The two CPUs also perform continuous mutual monitoring. The ECM sets a DTC if: 1) output from the 2 CPUs are different and deviate from the standards, 2) the signals to the throttle actuator deviate from the standards, 3) malfunction is found in the throttle actuator supply voltage, and 4) any other ECM malfunction is found.

| DTC No. | DTC Detection Condition | Trouble Area |
|---------|-------------------------|--------------|
| P0604   | ECM internal errors     | • ECM        |
| P0606   |                         |              |
| P0607   |                         |              |
| P0657   |                         |              |

# MONITOR STRATEGY

| Related DTCs                | P0604: ECM RAM errors<br>P0606: ECM CPU malfunction<br>P0657: ETCS power supply function of ECM malfunction |
|-----------------------------|-------------------------------------------------------------------------------------------------------------|
| Required sensors/components | ECM                                                                                                         |
| Frequency of operation      | Continuous: P0604, P0606, P0607<br>Once per driving cycle: P0657                                            |
| Duration                    | Within 4 minutes                                                                                            |
| MIL operation               | Immediately                                                                                                 |
| Sequence of operation       | None                                                                                                        |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None |
|------------------------------------------------------------------|------|
|------------------------------------------------------------------|------|

# TYPICAL MALFUNCTION THRESHOLDS

#### ECM RAM errors:

| Difference between main and sub CPUs output | Larger than the specified range |
|---------------------------------------------|---------------------------------|
|                                             |                                 |

#### ECM CPU malfunction:

|   | ifference between throttle position of main CPU and throttle position sub CPU | 0.3 V or more |
|---|-------------------------------------------------------------------------------|---------------|
| - |                                                                               |               |

#### Electronic throttle control system power supply function of ECM malfunction:

| Electronic throttle control system power supply when power switch is | 7 V or more |
|----------------------------------------------------------------------|-------------|
| turned from OFF to ON                                                |             |

# **INSPECTION PROCEDURE**

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 CHECK ECM VOLTAGE (IN ADDITION TO DTC P0604 / P0606 / 0P607 / P0657)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the tester ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (d) Read DTCs.

# Display (DTC output) Proceed to P0604 or P0606 or P0607 or P0657 A P0604 or P0606 or P0607 or P0657 and other DTCs B



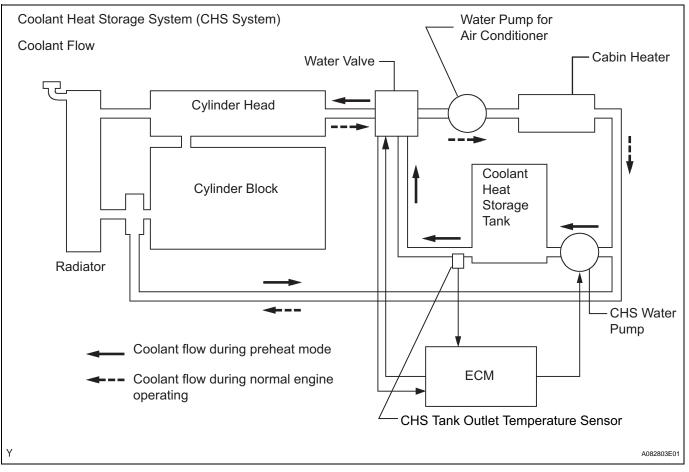
GO TO RELEVANT DTC CHART

A

Result

**REPLACE ECM** 

ES


| DTC | P1115 | Coolant Temperature Sensor Circuit for Cool-<br>ant Heat Storage System |
|-----|-------|-------------------------------------------------------------------------|
| DTC | P1117 | Coolant Temperature Sensor Circuit Low for<br>Coolant Heat Storage      |
| DTC | P1118 | Coolant Temperature Sensor Circuit High for<br>Coolant Heat Storage     |

# DESCRIPTION

HINT:

# ES

Although each DTC title says "Coolant Temperature Sensor", these DTCs are related to the coolant heat storage tank outlet temperature sensor.



This system uses an electric pump to supply hot coolant stored in the coolant heat storage tank into the cylinder head of the engine, in order to optimize engine starting combustion and reduce the amount of unburned gas that is discharged while the engine is started. Before the engine starts, the ECM operates the electric water pump to direct the hot coolant in the heat storage tank into the engine, in order to heat the cylinder head (this process is called "preheat mode"). The duration of the operation of the electric water pump is variable, depending on the temperature of the cylinder head. During the normal operation of the engine, the water valve opens the passage between the cylinder head and the heater and closes the passage between the cylinder head and the cylinder head is heated, the water valve opens the passage between the tank and the cylinder head, in order to allow the coolant to flow from the tank to the cylinder head. At this time, in order to warm up the intake port quickly before the engine is started, the coolant flows in the reverse direction.

The sensor for the system, which is provided at the tank outlet, is constructed similarly to the engine coolant temperature sensor and is connected to the ECM. The CHS tank outlet temperature sensor has a built in thermistor, whose resistance varies with the coolant temperature. HINT:

If the ECM detects the DTC P0115, P0117 or P0118, it operates the fail-safe function in which the engine coolant temperature is assumed to be 80°C (176°F).

| DTC No. | DTC Detection Condition                                                     | Trouble Area                                                                                                                                 |
|---------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| P1115   | Open or short in CHS tank outlet temperature sensor circuit for 0.5 seconds | <ul> <li>Open or short in CHS tank outlet<br/>temperature sensor circuit</li> <li>CHS tank outlet temperature sensor</li> <li>ECM</li> </ul> |
| P1117   | Short in CHS tank outlet temperature sensor circuit                         | <ul> <li>Short in CHS tank outlet temperature<br/>sensor circuit</li> <li>CHS tank outlet temperature sensor</li> <li>ECM</li> </ul>         |
| P1118   | Open in CHS tank outlet temperature sensor circuit                          | <ul> <li>Open in CHS tank outlet temperature<br/>sensor circuit</li> <li>CHS tank outlet temperature sensor</li> <li>ECM</li> </ul>          |

### **MONITOR DESCRIPTION**

The ECM monitors the sensor voltage and uses this value to control the coolant heat storage (CHS) system properly. If the sensor output voltage deviates from the normal operating range, the ECM determines that the CHS tank outlet temperature sensor circuit has malfunctioned, and outputs a DTC. Example:

A sensor output voltage of -40°C (-40°F) or 140°C (284°F) is determined to be malfunction.

# **MONITOR STRATEGY**

| Related DTCs                | P1115: Coolant temperature sensor circuit for coolant heat storage<br>system<br>P1117: Coolant temperature sensor circuit low for coolant heat<br>storage system<br>P1118: Coolant temperature sensor circuit high for coolant heat<br>storage system |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required sensors/components | Coolant heat storage tank outlet temperature sensor                                                                                                                                                                                                   |
| Frequency of operation      | Continuous                                                                                                                                                                                                                                            |
| Duration                    | 0.5 seconds                                                                                                                                                                                                                                           |
| MIL operation               | Immediately                                                                                                                                                                                                                                           |
| Sequence of operation       | None                                                                                                                                                                                                                                                  |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None |
|------------------------------------------------------------------|------|
|------------------------------------------------------------------|------|

#### TYPICAL MALFUNCTION THRESHOLDS P1115:

| Sensor resistance (coolant temperature at CHS tank outlet) | Less than 0.14 V or more than 4.91 V               |
|------------------------------------------------------------|----------------------------------------------------|
|                                                            | (more than 140°C (284°F) or -40°C (-40°F) or less) |

### <u>P11</u>17:

| Sensor resistance (coolant temperature at CHS tank outlet) | Less than 0.14 V          |
|------------------------------------------------------------|---------------------------|
|                                                            | (more than 140°C (284°F)) |

#### P1118:


| Sensor resistance (coolant temperature at CHS tank outlet) | More than 4.19 V        |
|------------------------------------------------------------|-------------------------|
|                                                            | (-40°C (-40°F) or less) |

# **COMPONENT OPERATING RANGE**

Sensor resistance

79  $\Omega$  (140°C (284°F)) to 156 k $\Omega$  (-40°C (-40°F))

# WIRING DIAGRAM



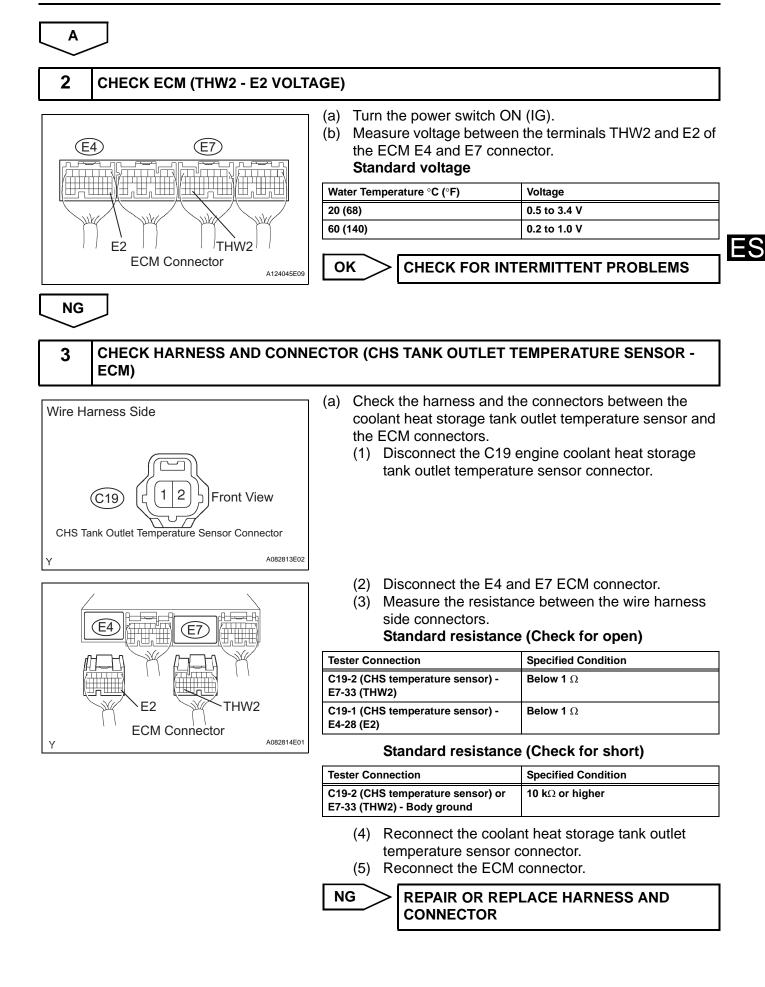
### **INSPECTION PROCEDURE**

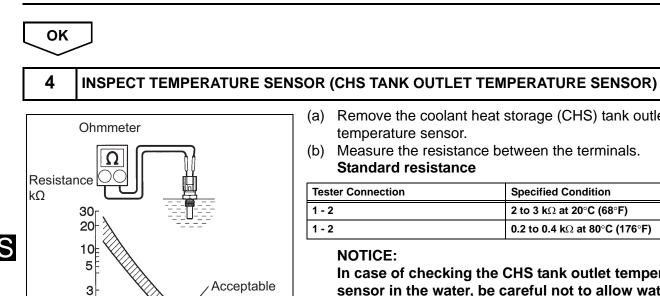
#### CAUTION:

1

Be careful when replacing any part in the system or changing the coolant because the coolant in the heat storage tank is hot even if the engine is cold. HINT:

- If different DTCs related to different systems that have terminal E2 as the ground terminal are output simultaneously, terminal E2 may have an open circuit.
- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.


#### READ VALUE OF INTELLIGENT TESTER


- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG) and turn the intelligent tester ON.
- (c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II /DTC INFO / CURRENT CODES.
- (d) Read DTCs. Result

| Display (DTC Output) | Proceed to |
|----------------------|------------|
| P1115                | A          |
| P1117                | В          |
| P1118                | В          |

В

Go to step 3





2

1

0.5

0.3

0.2

0.1

Temperature °C (°F)

-20 0 20 40 60 80 100 (-4) (32) (68) (104) (140) (176) (212)

- (a) Remove the coolant heat storage (CHS) tank outlet temperature sensor.
- Measure the resistance between the terminals. (b) Standard resistance

| Tester Connection | Specified Condition           |
|-------------------|-------------------------------|
| 1 - 2             | 2 to 3 kΩ at 20°C (68°F)      |
| 1 - 2             | 0.2 to 0.4 kΩ at 80°C (176°F) |

#### NOTICE:

In case of checking the CHS tank outlet temperature sensor in the water, be careful not to allow water to contact the terminals. After checking, dry the sensor. HINT:

Alternate procedure: Connect an ohmmeter to the installed CHS tank outlet temperature sensor and read the resistance. Use an infrared thermometer to measure the CHS tank outlet temperature in the immediate vicinity of the sensor. Compare these values to the resistance/ temperature graph. Change the engine temperature (warm up or allow to cool down) and repeat the test.

(c) Reinstall the coolant heat storage tank outlet temperature sensor.

NG

A081700E08

**REPLACE TEMPERATURE SENSOR** 

**REPLACE ECM** 

OK

# Coolant Temperature Sensor Circuit Stack for Coolant Heat Storage

# DESCRIPTION

Refer to DTC P1115 (see page ES-291).

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                       | Trouble Area                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| P1116   | <ul> <li>Temperature change during hot coolant recovering:<br/>3°C (1.8°F) or less</li> <li>Difference between CHS tank outlet temperature and engine coolant temperature during hot coolant recovering:<br/>More than 25°C (45°F)</li> </ul> | <ul> <li>Coolant heat storage tank outlet<br/>temperature sensor</li> <li>Cooling system (clogging)</li> </ul> |

# **MONITOR DESCRIPTION**

The coolant heat storage (CHS) tank outlet temperature sensor is used for monitoring coolant temperature in the vicinity of the outlet port of the heat storage tank of the CHS system. The resistance of the sensor increases when the CHS tank outlet temperature is low, and conversely, the resistance decreases when the temperature is high. The changes in resistance are reflected in the voltage that is output by the sensor. The ECM monitors the sensor voltage and uses this value to control CHS system properly.

If the sensor output voltage deviates from the normal operating range, the ECM determines that the CHS tank outlet temperature sensor circuit has malfunctioned, and sets a DTC. Examples:

1) No changes occur in the CHS tank outlet temperature sensor signal (over 1°C [1.8°F]) after a predetermined length of time has elapsed from the start of the coolant recovering.

2) A significant difference (over 25°C [45°F]) exists between the engine coolant temperature signal and the CHS tank outlet temperature sensor signal after a predetermined length of time has elapsed from the start of the coolant recovering.

# **MONITOR STRATEGY**

| Related DTCs                | P1116 : Coolant temperature sensor circuit range check (stuck)                                                |
|-----------------------------|---------------------------------------------------------------------------------------------------------------|
| Required sensors/components | Main:<br>Coolant heat storage tank outlet temperature sensor<br>Related:<br>Engine coolant temperature sensor |
| Frequency of operation      | Once per driving cycle                                                                                        |
| Duration                    | 45 seconds                                                                                                    |
| MIL operation               | 2 driving cycles                                                                                              |
| Sequence of operation       | None                                                                                                          |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present              | None                  |
|-------------------------------------------------------------------------------|-----------------------|
| Coolant heat storage system malfunction                                       | Not detected          |
| Coolant heat recovering                                                       | ON                    |
| Difference between engine coolant temperature and CHS tank outlet temperature | More than 30°C (54°F) |

# TYPICAL MALFUNCTION THRESHOLDS

Temperature variation of CHS tank outlet during hot coolant recovery 3°C or less

| Difference between temperatures of CHS tank outlet and engine | More |
|---------------------------------------------------------------|------|
| coolant during hot coolant recovery                           |      |

re than 25°C (45°F)

# WIRING DIAGRAM

Refer to DTC P1115 (see page ES-293).

# **INSPECTION PROCEDURE**

#### CAUTION:

Be careful when replacing any part in the system or changing the coolant because the coolant in the heat storage tank is hot even if the engine is cold. HINT:

2

- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

#### 1

# CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P1116)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

| Display (DTC output) | Proceed to |
|----------------------|------------|
| P1116                | Α          |
| P1116 and other DTCs | В          |

HINT:

If any other codes besides P1116 are output, perform troubleshooting for those DTCs first.

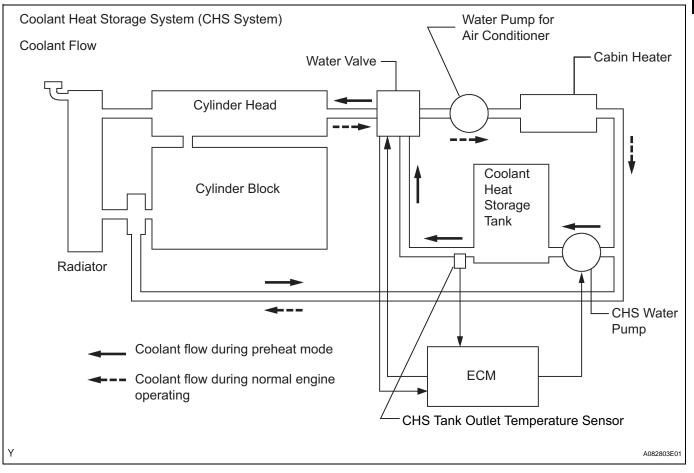
TO RELEVANT DTC CHART

A

2

CHECK COOLING SYSTEM (CHECK FOR CLOGGING IN THE COOLANT SYSTEM)





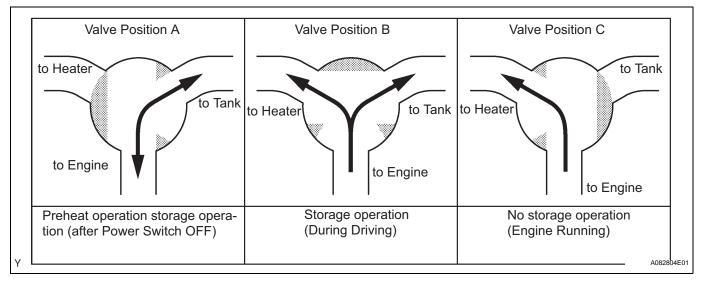

OK

REPLACE TEMPERATURE SENSOR (CHS TANK OUTLET TEMPERATURE SENSOR)

| DTC | P1120 | Coolant Flow Control Valve Position Sensor<br>Circuit      |
|-----|-------|------------------------------------------------------------|
| DTC | P1122 | Coolant Flow Control Valve Position Sensor<br>Circuit Low  |
| DTC | P1123 | Coolant Flow Control Valve Position Sensor<br>Circuit High |

### DESCRIPTION




This system uses an electric pump to supply hot coolant stored in the heat storage tank into the cylinder head of the engine, in order to optimize engine starting combustion and reduce the amount of unburned gas that is discharged while the engine is started. Before the engine starts, the ECM operates the electric water pump to direct the hot coolant in the heat storage tank into the engine, in order to heat the cylinder head (this process is called "preheat mode"). The duration of the operation of the electric water pump is variable, depending on the temperature of the cylinder head. During the normal operation of the engine, the water valve opens the passage between the cylinder head and the heater and closes the passage between the tank. During preheat mode in which the cylinder head is heated, the water valve opens the passage between the tank and the cylinder head, in order to allow the coolant to flow from the tank to the cylinder head. At this time, in order to warm up the intake port quickly before the engine is started, the coolant flows in the reverse direction.

The water valve for the coolant heat storage (CHS) system, which is located at the heater hoses, controls the coolant passages to the engine, heater core, and the CHS tank in accordance with the operating conditions of the system.

The water valve consists of a water valve, valve position sensor, and valve control motor. The potentiometer, which is coupled coaxially to the water valve, converts the valve position into voltage and transmits it to the ECM in the form of a position signal.

| DTC No. | DTC Detection Condition                                                         | Trouble Area                                                                                                                                                                           |
|---------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1120   | Water valve position sensor voltage is less than 0.2 V or more than 4.8 V       | <ul> <li>Open or short in water valve position<br/>sensor circuit</li> <li>Water valve (coolant flow control valve)</li> <li>ECM</li> </ul>                                            |
| P1122   | Water valve position sensor voltage stays less than 0.2 V for 2 seconds or more | <ul> <li>Water valve (coolant flow control valve)</li> <li>Short in WBAD circuit</li> <li>Open in VC circuit</li> <li>ECM</li> </ul>                                                   |
| P1123   | Water valve position sensor voltage stays more than 4.8 V for 2 seconds or more | <ul> <li>Water valve (coolant flow control valve)</li> <li>Short in WBAD circuit</li> <li>Open in E2 circuit</li> <li>VC and WBAD circuits are short-circuited</li> <li>ECM</li> </ul> |

# MONITOR DESCRIPTION



A potentiometer is provided in the coolant heat storage (CHS) system. The ECM uses the valve position signal output by the water valve for effecting control that is appropriate for the operating condition of the engine. The water valve effects control in three steps as indicated below, and the ECM determines the position of the valve according to the voltage of the respective step.

If the signal output by the water valve exceeds the normal range, the ECM determines that a malfunction has occurred in the water valve position sensor circuit and outputs a DTC.

#### Water Valve Operation

| System Condition                             | Valve Position | Coolant Flow                                         |
|----------------------------------------------|----------------|------------------------------------------------------|
| Normal engine operation                      | С              | Engine to Cabin heater                               |
| Preheat mode                                 | A              | Coolant heat storage tank to Engine                  |
| Coolant recovering (after engine stop)       | A              | Engine to Coolant heat storage tank                  |
| Coolant recovering (while engine is running) | В              | Engine to Cabin heater and Coolant heat storage tank |
| Soak mode                                    | A              | Coolant heat storage tank to Engine                  |

ES

#### MONITOR STRATEGY

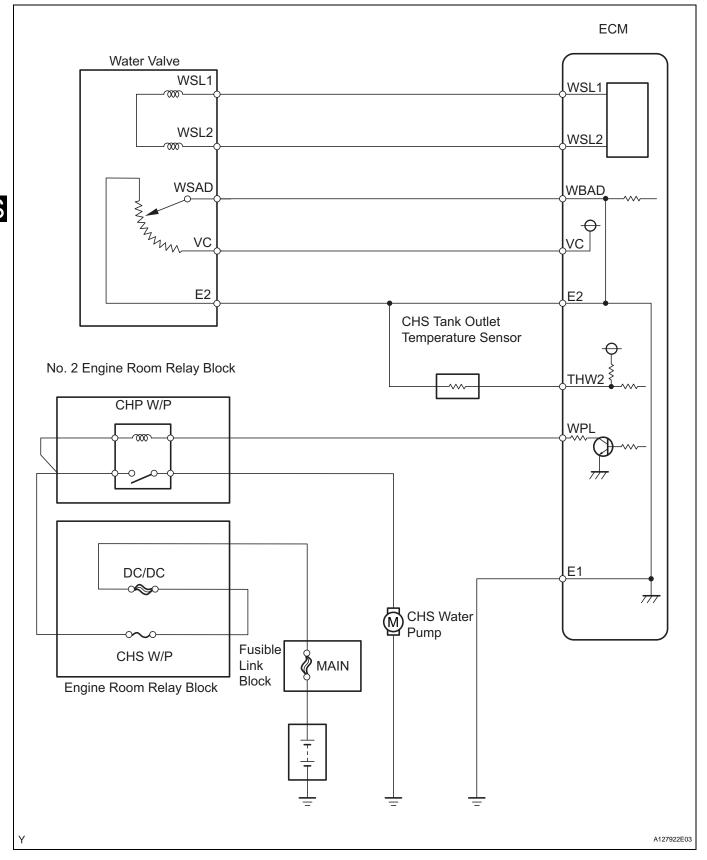
| Related DTCs                | <ul> <li>P1120: Coolant flow control valve (water valve) position sensor circuit range check (fluttering)</li> <li>P1122: Coolant flow control valve (water valve) position sensor circuit range check (low voltage)</li> <li>P1123: Coolant flow control valve (water valve) position sensor circuit range check (high voltage)</li> </ul> |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required sensors/components | Water valve position sensor                                                                                                                                                                                                                                                                                                                 |
| Frequency of operation      | Continuous                                                                                                                                                                                                                                                                                                                                  |
| Duration                    | 2 seconds                                                                                                                                                                                                                                                                                                                                   |
| MIL operation               | Immediately                                                                                                                                                                                                                                                                                                                                 |
| Sequence of operation       | None                                                                                                                                                                                                                                                                                                                                        |

# TYPICAL ENABLING CONDITIONS

| The monitor will run whenever the following DTCs are not present | None |  |
|------------------------------------------------------------------|------|--|
|------------------------------------------------------------------|------|--|

# **TYPICAL MALFUNCTION THRESHOLDS**

P1120:


| Water valve position signal | Less than 0.2 V or more than 4.8 V |  |
|-----------------------------|------------------------------------|--|
| P1122:                      |                                    |  |
| Water valve position signal | Less than 0.2 V                    |  |
| P1123:                      |                                    |  |
| Water valve position signal | More than 4.8 V                    |  |

# **COMPONENT OPERATING RANGE**

|                             | 0.415.0.014  |
|-----------------------------|--------------|
| Water valve position signal | 0.4 to 2.2 V |
|                             |              |

ES

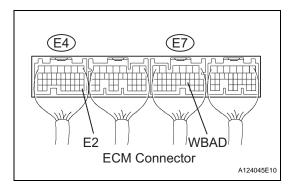
#### WIRING DIAGRAM



# **INSPECTION PROCEDURE**

HINT:

Although each DTC title says "Coolant Flow Control Valve", these DTCs are related to the water valve.


#### CAUTION:

Be careful when replacing any part in the system or changing the coolant because the coolant in the heat storage tank is hot even if the engine is cold.

HINT:

- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

# 1 CHECK ECM (WBAD - E2 VOLTAGE)



| (a) | Turn the | power | switch | ON | (IG). |  |
|-----|----------|-------|--------|----|-------|--|
|     |          |       |        |    |       |  |

(b) Measure voltage between the terminals WBAD and E2 of the E4 and E7 ECM connectors.

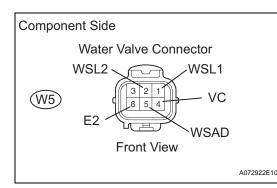
#### Standard voltage

| Water Valve                              | Specified Condition |
|------------------------------------------|---------------------|
| Valve position "A" (Preheat mode)        | Approximately 2.5 V |
| Valve position "B" (Recovering mode)     | Approximately 3.5 V |
| Valve position "C" (Normal<br>Operation) | Approximately 4.5 V |

HINT:

After the HV main system is turned OFF (READY to IG OFF condition), the valve position will be set to position A.




#### **CHECK FOR INTERMITTENT PROBLEMS**

NG

2

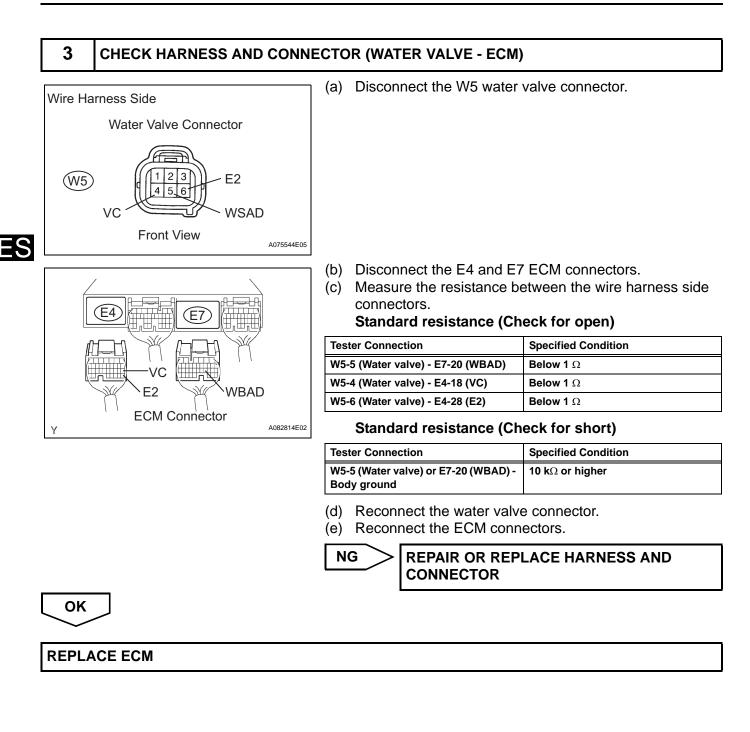
OK

#### INSPECT WATER M/BRACKET VALVE ASSEMBLY



| (a) | Disconnect the | W5 water | r valve connector. |  |
|-----|----------------|----------|--------------------|--|
|-----|----------------|----------|--------------------|--|

(b) Measure resistance between terminals WSL1 and WSL2 of the water valve connector.


(c) Measure resistance between terminals WSAD and E2 of the water valve connector.

#### Standard resistance

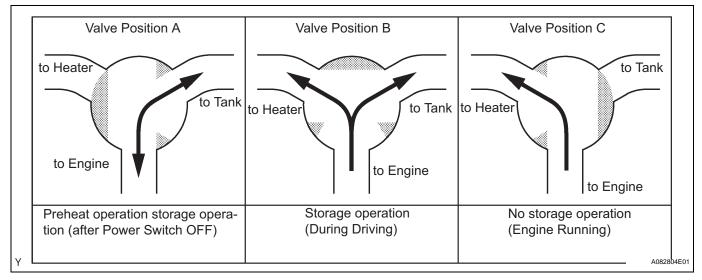
| Tester Connection   | Specification Condition       |
|---------------------|-------------------------------|
| 1 (WSL1) - 2 (WSL2) | Approximately 0.04 k $\Omega$ |
| 5 (WSAD) - 6 (E2)   | <b>0.2 to 5.7 k</b> Ω         |

NG

#### REPLACE WATER W/BRACKET VALVE ASSEMBLY



P1121


# Coolant Flow Control Valve Position Sensor Circuit Stuck

# DESCRIPTION

Refer to DTC P1120 (see page ES-298).

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                                                                                                                                | Trouble Area                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| P1121   | <ul> <li>Water valve position sensor output voltage:<br/>No change despite the ECM sending a valve control signal or slow response</li> <li>CHS tank outlet temperature sensor output:<br/>60°C (140°F) or more (when hot coolant recovering starts)</li> <li>CHS tank outlet temperature sensor output:<br/>No change despite the hot coolant is recovered</li> </ul> | <ul> <li>Water valve</li> <li>Cooling system (clogging)</li> <li>ECM</li> </ul> |

# MONITOR DESCRIPTION



The ECM monitors the position of the water valve based on the valve position signal that is output by the water valve position sensor (potentiometer), which is coupled coaxially to the valve. The water valve effects control in three steps as indicated above, and the ECM determines the position of the valve according to the voltage of the respective step.

In order to ensure the proper monitoring of the water valve, the ECM checks for malfunctions with the combination of the output of the potentiometer and CHS tank outlet temperature sensor.

If no changes occur in the valve position signal that is being input into the ECM or if the response signal from the water valve is very slow, despite of the ECM commanding the water valve motor to operate the ECM determines that malfunction has occurred in the water valve position sensor circuit, and sets a DTC.

# **MONITOR STRATEGY**

#### Potentiometer detection

| Related DTCs                | P1121: Coolant flow control valve position sensor circuit stuck        |
|-----------------------------|------------------------------------------------------------------------|
| Required sensors/components | Main:<br>Water valve<br>Related:<br>CHS tank outlet temperature sensor |
| Frequency of operation      | Once per driving cycle                                                 |

ES–311

ΞS

| Duration              | 20 seconds      |
|-----------------------|-----------------|
| MIL operation         | 2 driving cycle |
| Sequence of operation | None            |

#### Tank outlet coolant temperature detection

| Related DTCs                | P1121: Coolant flow control valve position sensor circuit stuck        |
|-----------------------------|------------------------------------------------------------------------|
| Required sensors/components | Main:<br>Water valve<br>Related:<br>CHS tank outlet temperature sensor |
| Frequency of operation      | Once per driving cycle                                                 |
| Duration                    | 10 seconds                                                             |
| MIL operation               | 2 driving cycle                                                        |
| Sequence of operation       | None                                                                   |

# **TYPICAL ENABLING CONDITIONS**

#### **Potentiometer detection**

| The monitor will run whenever the following DTCs are not present | None                                       |
|------------------------------------------------------------------|--------------------------------------------|
| Coolant heat storage system malfunction                          | Not detected                               |
| Battery voltage                                                  | 10 V or more                               |
| Engine coolant temperature                                       | 0°C (32°F) or more                         |
| Water valve operation                                            | Commanded                                  |
| Response time of valve movement                                  | Time under calculation with valve position |

#### Tank outlet coolant temperature detection

| The monitor will run whenever the following DTCs are not present                 | None                  |
|----------------------------------------------------------------------------------|-----------------------|
| Coolant heat storage system malfunction                                          | Not detected          |
| Battery voltage                                                                  | 10 V or more          |
| System status                                                                    | During recovering     |
| CHS tank outlet temperature difference between preheating start and engine start | 20°C (36°F) or more   |
| Difference between engine coolant temperature and CHS tank outlet temperature    | More than 30°C (54°F) |

# **TYPICAL MALFUNCTION THRESHOLDS**

#### **Potentiometer detection**

| Either of the following conditions is met:                                                                                                                                                           | (a) or (b)    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <ul><li>(a) Potentiometer output difference [D divided C]</li><li>C: Difference between previous and current target</li><li>D: Difference between potentiometer output and previous target</li></ul> | 10% or more   |
| (b) Potentiometer output deviation from target                                                                                                                                                       | 0.1 V or more |

#### Tank outlet coolant temperature detection

| Either of the following conditions is met:                                           | (a) or (b)            |
|--------------------------------------------------------------------------------------|-----------------------|
| (a) Heat storage tank outlet coolant temperature when recover starts                 | 60°C (108°F) or more  |
| (b) Heat storage tank outlet coolant temperature difference during water valve check | Less than 3°C (5.4°F) |

# WIRING DIAGRAM

Refer to DTC P1120 (see page ES-301).

#### **INSPECTION PROCEDURE**

HINT:

- Although each DTC title says "Coolant Flow Control Valve", these DTCs are related to the water valve.
- CHS stands for Coolant Heat Storage.

#### CAUTION:

1

Be careful when replacing any part in the system or changing the coolant because the coolant in the heat storage tank is hot even if the engine is cold. HINT:

- If DTCs P1121 and P1150 are detected simultaneously, there may be malfunction in the water valve system.
- If DTC P1121 is detected, coolant passages may be clogged.
- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

#### CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P1121)

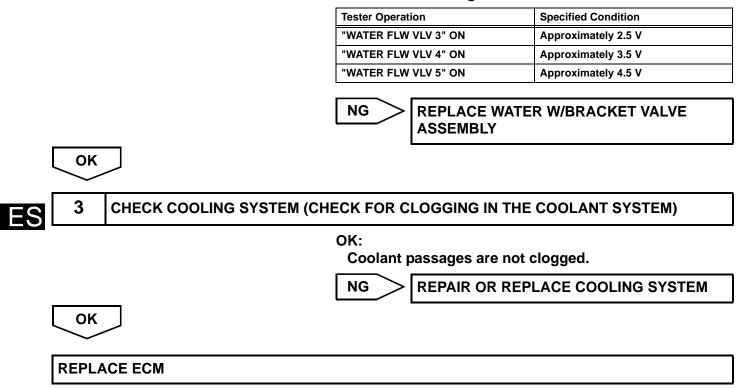
- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

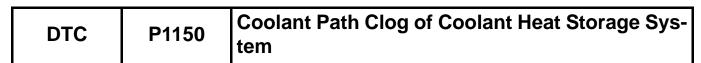
| Display (DTC Output) | Proceed to |
|----------------------|------------|
| P1121                | A          |
| P1121 and other DTCs | В          |

#### HINT:

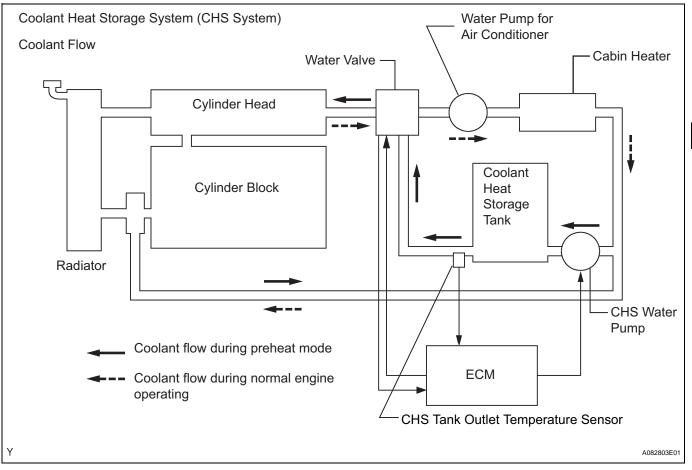
If any other codes besides P1121 are output, perform troubleshooting for those DTCs first.




A


2

#### PERFORM ACTIVE TEST BY INTELLIGENT TESTER


- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Put the engine in inspection mode (see page ES-1).
- (e) Start the engine and warm it up.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / WATER FLW VLV3, WATER FLW VLV4 or WATER FLW VLV5.
- (g) Measure the voltage between terminals WBAD and E2 of the ECM connector.

#### Standard voltage





### DESCRIPTION



This system uses an electric pump to supply hot coolant stored in the coolant heat storage (CHS) tank into the cylinder head of the engine, in order to optimize engine starting combustion and reduce the amount of unburned gas that is discharged while the engine is started. Before the engine starts, the ECM operates the electric water pump to direct the hot coolant in the CHS tank into the engine, in order to heat the cylinder head (this process is called "preheat mode"). The duration of the operation of the electric water pump is variable, depending on the temperature of the cylinder head. During normal operation of the engine, the water valve opens the passage between the cylinder head and the heater and closes the passage between the cylinder head and the tank. During the preheat mode in which the cylinder head is heated, the water valve opens the passage between the tank and the cylinder head, in order to allow the coolant to flow from the tank to the cylinder head. At this time, in order to warm up the intake port quickly before the engine is started, the coolant flows in the reverse direction.

This system consists of the CHS tank, CHS water pump, CHS tank outlet temperature sensor, water valve, and a soak timer that is built in the ECM.

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                                                                            | Trouble Area                                                                                                                                             |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| P1150   | <ul> <li>Following conditions are met:</li> <li>Change in CHS tank outlet temperature and engine coolant temperature after water pump is ON during preheat mode: below 2°C (3.6°F)</li> <li>Change in CHS tank outlet temperature as water valve is opened to tank, on a warm engine: below 3°C (5.4°F)</li> </ul> | <ul> <li>CHS tank outlet temperature sensor</li> <li>Water valve (coolant flow control valve)</li> <li>Cooling system (clogging)</li> <li>ECM</li> </ul> |

# MONITOR DESCRIPTION

The ECM detects malfunction in the coolant heat storage (CHS) system with the CHS tank outlet temperature signal, the position of the water valve and the engine running condition. In order to ensure the reliable malfunction detection, the ECM detects coolant passage clogging malfunction in two ways. Thus, when the following two detection conditions are met, the ECM determines that the coolant passage has clogged and sets a DTC.

- When starting the engine, a variation in the CHS tank outlet temperature and engine coolant temperature before and after preheating is below 2°C (3.6°F).
- After the engine is warmed up, a variation in the CHS tank outlet temperature when the ECM opens the water valve is below 3°C (5.4°F).

# **MONITOR STRATEGY**

| Related DTCs                       | P1150: Coolant path clog up for coolant heat storage system |
|------------------------------------|-------------------------------------------------------------|
| Required sensors/components (main) | CHS tank outlet temperature sensor                          |
| Frequency of operation             | Once per driving cycle                                      |
| Duration                           | 10 seconds                                                  |
| MIL operation                      | 1 driving cycle                                             |
| Sequence of operation              | None                                                        |

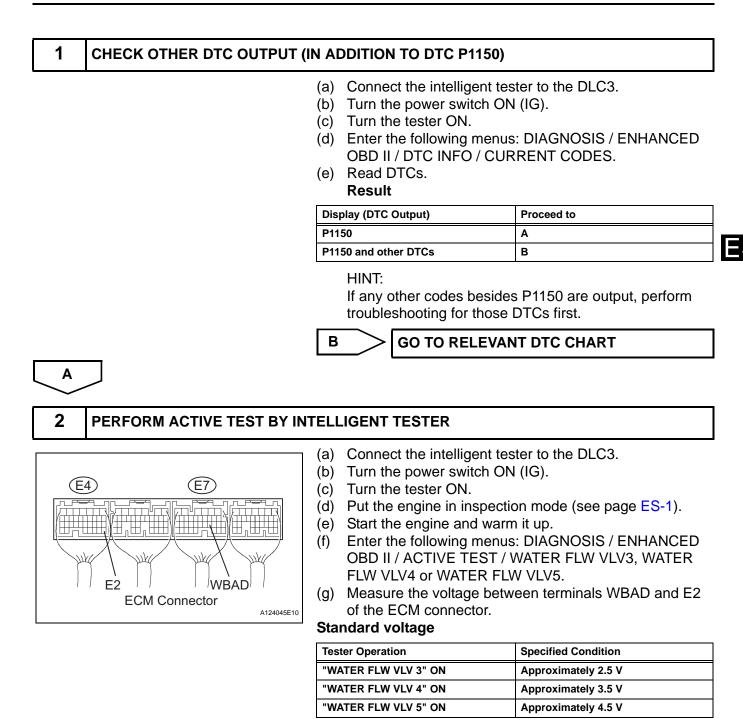
# TYPICAL ENABLING CONDITIONS

| The monitor will run whenever the following DTCs are not present                                     | None                |
|------------------------------------------------------------------------------------------------------|---------------------|
| Coolant heat storage system malfunction                                                              | Not detected        |
| Coolant heat storage water pump operation time                                                       | 3 seconds or more   |
| Variation in CHS tank coolant temperature and engine coolant temperature before and after preheating | 2°C (3.6°F) or less |
| Engine coolant temperature                                                                           | 65°C(149°F) or more |

# TYPICAL MALFUNCTION THRESHOLDS

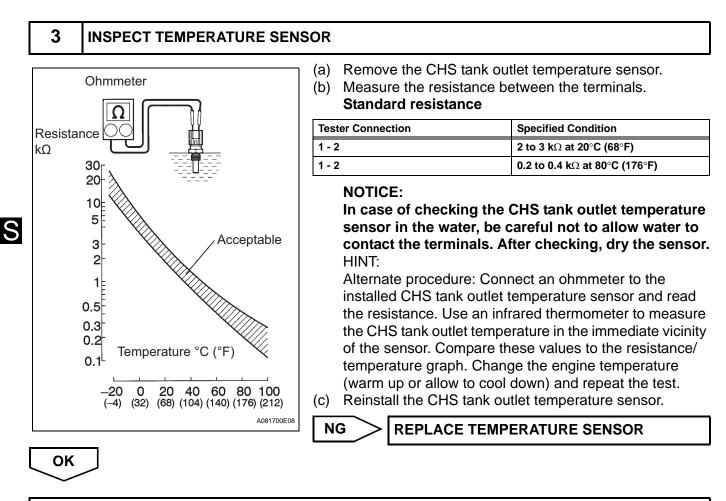
| Variation in CHS tank coolant temperature during passage clogging check | Less than 3°C (5.4°F) |
|-------------------------------------------------------------------------|-----------------------|
|-------------------------------------------------------------------------|-----------------------|

### WIRING DIAGRAM


Refer to DTC P1115 (see page ES-293).

### **INSPECTION PROCEDURE**

#### CAUTION:

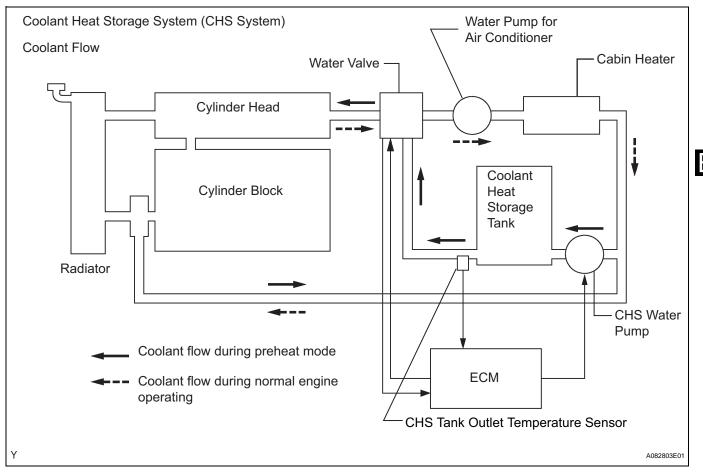

Be careful when replacing any part in the system or changing the coolant because the coolant in the heat storage tank is hot even if the engine and the radiator are cold. HINT:

- The detection of this DTC may indicate that the coolant heat storage (CHS) tank outlet water temperature sensor stuck or the water valve stuck.
- If DTC P1121 is detected, coolant passages may be clogged.
- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.



REPLACE WATER W/BRACKET VALVE ASSEMBLY

ок




CHECK COOLING SYSTEM (CHECK FOR CLOGGING IN THE COOLING SYSTEM)

P1151

# Coolant Heat Storage Tank

# DESCRIPTION



This system uses an electric pump to supply hot coolant stored in the coolant heat storage (CHS) tank into the cylinder head of the engine, in order to optimize engine starting combustion and reduce the amount of unburned gas that is discharged while the engine is started. Before the engine starts, the ECM operates the electric water pump to direct the hot coolant in the CHS tank into the engine, in order to heat the cylinder head (this process is called "preheat mode"). The duration of the operation of the electric water pump is variable, depending on the temperature of the cylinder head. During normal operation of the engine, the water valve opens the passage between the cylinder head and the heater and closes the passage between the cylinder head and the tank. During the preheat mode in which the cylinder head is heated, the water valve opens the passage between the tank and the cylinder head, in order to allow the coolant to flow from the tank to the cylinder head. At this time, in order to warm up the intake port quickly before the engine is started, the coolant flows in the reverse direction.

This system consists of the CHS tank, CHS water pump, CHS tank outlet temperature sensor, water valve, and a soak timer that is built in the ECM.

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                                              | Trouble Area              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| P1151   | <ul> <li>Following conditions are successively met:</li> <li>CHS tank outlet temperature during preheating: below 50°C (122°F) (2 trip detection condition)</li> <li>CHS tank outlet temperature during soaking: 30°C (54°F) or more lower than during coolant recovering</li> </ul> | Coolant heat storage tank |

# MONITOR DESCRIPTION

The ECM detects malfunction in the coolant heat storage (CHS) system with the CHS tank coolant temperature, the position of the water valve, the running condition of the engine and the operating condition of the soak timer. The soak timer built in the ECM prompts the ECM to actuate the water pump 5 hours after the HV main system has been turned OFF by using the power switch. The ECM then checks the heat retention condition of the CHS tank. In order to ensure the reliable malfunction detection, the ECM detects the CHS tank heat retention malfunction in two ways. thus, when the following two detection conditions are consecutively met, the ECM determines that the heat retention has deteriorated and sets a DTC.

(1) During preheating, the CHS tank outlet water temperature is below 50°C (122°F) (2 trip detection logic).

(2) During soaking, the CHS tank outlet temperature is more than 30°C (86°F) lower than that during the got coolant recovery.

# **MONITOR STRATEGY**

| Related DTCs                | P1151: Coolant heat storage tank   |
|-----------------------------|------------------------------------|
| Required sensors/components | CHS tank outlet temperature sensor |
| Frequency of operation      | Once per driving cycle             |
| Duration                    | 10 seconds                         |
| MIL operation               | 2 driving cycles                   |
| Sequence of operation       | None                               |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None                   |
|------------------------------------------------------------------|------------------------|
| Coolant heat storage system malfunction                          | Not detected           |
| Coolant heat storage water pump operation time                   | 3 seconds or more      |
| Storage coolant temperature                                      | More than 65°C (149°F) |

# **TYPICAL MALFUNCTION THRESHOLDS**

| Difference storage coolant temperature and heat storage tank outlet | 30°C (54°F) or more |
|---------------------------------------------------------------------|---------------------|
| coolant temperature                                                 |                     |

# **INSPECTION PROCEDURE**

#### CAUTION:

Be careful when replacing any part in the system or changing the coolant because the coolant in the heat storage tank is hot even if the engine and the radiator are cold. NOTICE:

If air breeding is not performed completely, this DTC may be detected after changing the coolant. HINT:

- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

# 1 REPLACE COOLANT HEAT STORAGE TANK



#### **REPAIR COMPLETED**

ES

| DTC | P1450 | Fuel Tank Pressure Sensor                   |  |
|-----|-------|---------------------------------------------|--|
| DTC | P1451 | Fuel Tank Pressure Sensor Range/Performance |  |
| DTC | P1452 | Fuel Tank Pressure Sensor Low Input         |  |
| DTC | P1453 | Fuel Tank Pressure Sensor High Input        |  |

### **DTC SUMMARY**

| DTC No. | Monitoring Item                                    | DTC Detection<br>Condition                                                                                        | Trouble Area                                                                                                                            | Detection Timing                                                                                 | Detection<br>Logic |
|---------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|
| P1450   | Pressure sensor<br>abnormal voltage<br>fluctuation | Sensor output voltage<br>rapidly fluctuates beyond<br>upper and lower<br>malfunction thresholds<br>for 7 seconds. | <ul> <li>Fuel tank pressure sensor</li> <li>ECM</li> </ul>                                                                              | Power switch ON     (IG)                                                                         | 1 trip             |
| P1451   | Pressure sensor<br>abnormal voltage<br>fluctuation | Sensor output voltage<br>fluctuates frequently in<br>certain time period.                                         | <ul> <li>Fuel tank pressure sensor</li> <li>Connector/wire harness<br/>(Fuel tank pressure sensor</li> <li>ECM)</li> <li>ECM</li> </ul> | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Engine running</li> </ul>           | 2 trips            |
| P1451   | Pressure sensor<br>constant voltage                | Sensor output voltage<br>does not vary in certain<br>time period.                                                 | <ul> <li>Fuel tank pressure sensor</li> <li>Connector/wire harness<br/>(Fuel tank pressure sensor<br/>- ECM)</li> <li>ECM</li> </ul>    | Engine running)                                                                                  | 2 trips            |
| P1452   | Pressure sensor<br>voltage low                     | Sensor output is less<br>than -3,999 Pa for 7<br>seconds.                                                         | <ul> <li>Fuel tank pressure sensor</li> <li>Connector/wire harness<br/>(Fuel tank pressure sensor</li> <li>ECM)</li> <li>ECM</li> </ul> | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Power switch ON<br/>(IG)</li> </ul> | 1 trip             |
| P1453   | Pressure sensor<br>voltage high                    | Sensor output 1,999 Pa<br>for 7 seconds.                                                                          | <ul> <li>Fuel tank pressure sensor</li> <li>Connector/wire harness<br/>(Fuel tank pressure sensor<br/>- ECM)</li> <li>ECM</li> </ul>    | <ul> <li>EVAP monitoring<br/>(power switch<br/>OFF)</li> <li>Power switch ON<br/>(IG)</li> </ul> | 1 trip             |

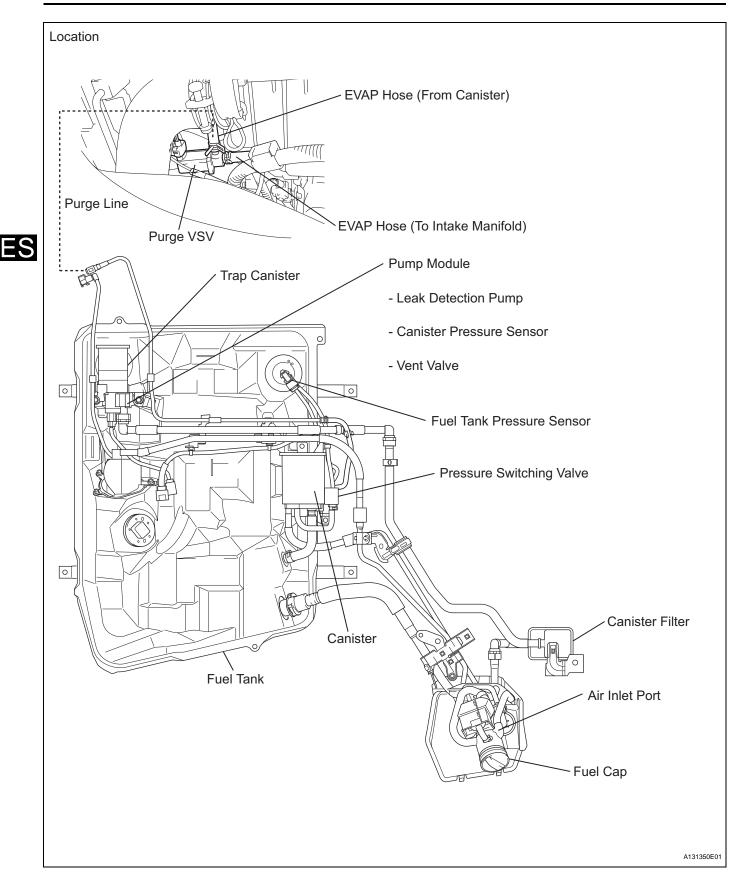
# DESCRIPTION

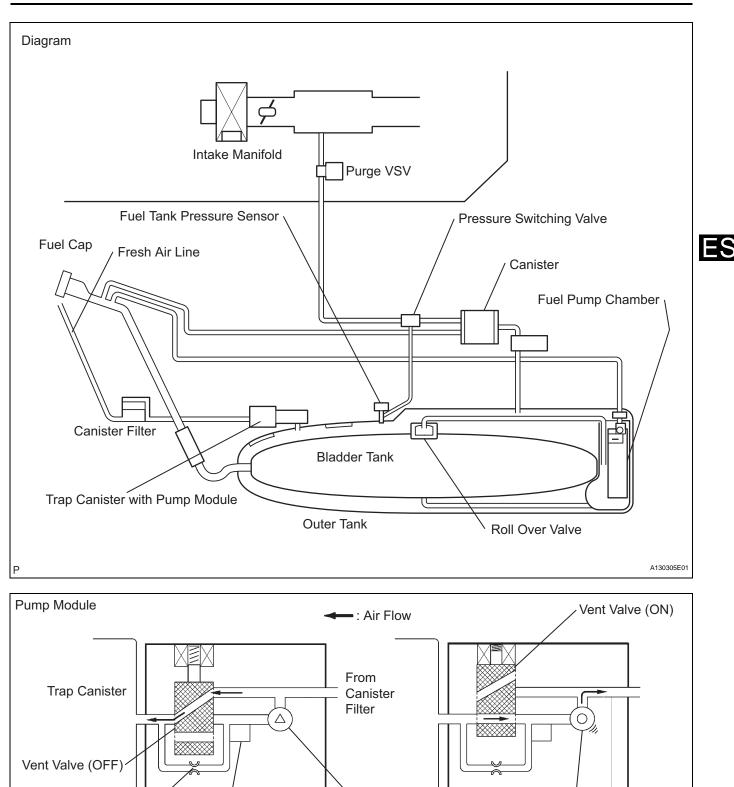
#### NOTICE:

In this vehicle's EVAP system, turning ON the vent valve does not seal off the EVAP system. To check for leaks in the EVAP system, disconnect the air inlet vent hose and apply pressure from the atmosphere side of the canister.

While the engine is running, if a predetermined condition (closed loop, etc.) is met, the purge VSV is opened by the ECM and stored fuel vapors in the canister are purged to the intake manifold. The ECM changes the duty cycle ratio of the purge VSV to control purge flow volume.

The purge flow volume is also determined by the intake manifold pressure. Atmospheric pressure is allowed into the canister through the vent valve to ensure that the purge flow is maintained when the negative pressure (vacuum) is applied to the canister.


#### Key-off monitor


This monitor checks for Evaporative Emission (EVAP) system leaks and canister pump module malfunctions. The monitor starts 5 hours\* after the power switch is turned OFF. More than 5 hours are required to allow the fuel to cool down to stabilize the Fuel Tank Pressure (FTP), thus making the EVAP system monitor more accurate.

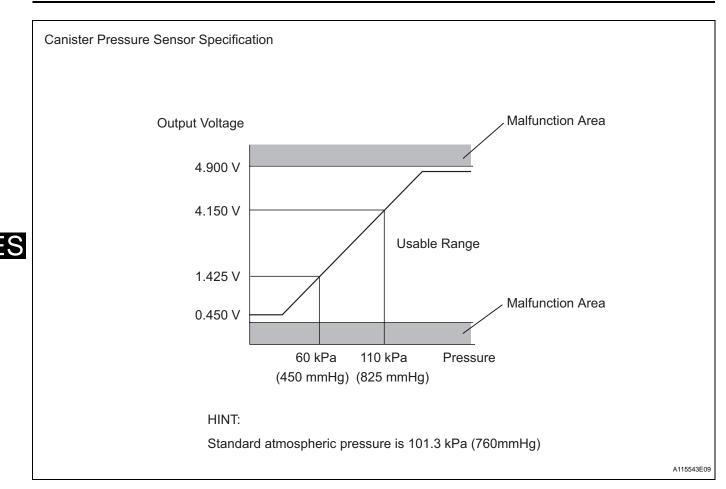
The leak detection pump creates negative pressure (vacuum) in the EVAP system and the pressure is measured. Finally, the ECM monitors for leaks from the EVAP system and malfunctions in both the canister pump module and purge VSV, based on the EVAP pressure. HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.

ES-323






Leak Detection Pump (OFF)

**Reference Orifice** 

Pressure Sensor

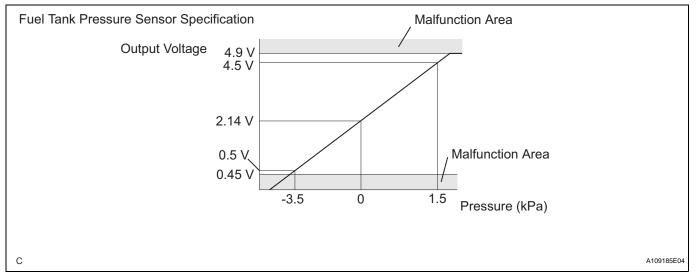


Leak Detection Pump (ON)



| Components                         | Operations                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canister, Trap canister            | Contains activated charcoal to absorb EVAP generated in fuel tank.                                                                                                                                                                                                                                                                                |
| Cut-off valve                      | Located in fuel tank. Valve floats and closes when fuel tank 100% full                                                                                                                                                                                                                                                                            |
| Purge Vacuum Switching Valve (VSV) | Opens or closes line between canister and intake manifold. ECM uses<br>purge VSV to control EVAP purge flow. In order to discharge EVAP<br>absorbed by canister to intake manifold, ECM opens purge VSV.<br>EVAP discharge volume to intake manifold controlled by purge VSV<br>duty cycle ratio (current-carrying time) (open: ON; closed: OFF). |
| Roll-over valve                    | Located in fuel tank. Valve closes by its own weight when vehicle<br>overturns to prevent fuel from spilling out.                                                                                                                                                                                                                                 |
| Soak timer                         | Built into ECM. To ensure accurate EVAP monitor, measures 5 hours<br>(+-15 min) after power switch OFF. This allows fuel to cool down,<br>stabilizing Fuel Tank Pressure (FTP). When approximately 5 hours<br>elapsed, ECM activates.                                                                                                             |
| Pressure switching valve           | The pressure switching valve located on the canister is used to detect<br>leakage from the bladder tank into the fuel tank. The valve opens<br>during the bladder tank leak check. Then, the fuel tank's fuel vapor<br>flows to the intake manifold without passing the canister.                                                                 |
| Pump module                        | Consists of (a) to (d) below. pump module cannot be disassembled.                                                                                                                                                                                                                                                                                 |
| (a) Vent valve                     | Vents and closes EVAP system. When ECM turns valve ON, EVAP<br>system closed. When ECM turns valve OFF, EVAP system vented.<br>Negative pressure (vacuum) created in EVAP system to check for<br>EVAP leaks by closing purge VSV, turning vent valve ON (closed) and<br>operating leak detection pump.                                            |
| (b) Canister pressure sensor       | Indicates pressure as voltage. ECM supplies regulated 5 V to canister<br>pressure sensor, and uses feedback from sensor to monitor EVAP<br>system pressure.                                                                                                                                                                                       |
| (c) Leak detection pump            | Creates negative pressure (vacuum) in EVAP system for leak check.                                                                                                                                                                                                                                                                                 |

| Components            | Operations                                                                                                                                                                                                                                      |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (d) Reference orifice | Has opening with 0.02 inch diameter. Vacuum produced through orifice by closing purge VSV, turning vent valve OFF and operating leak detection pump to monitor 0.02 inch leak criterion. 0.02 inch leak criterion indicates small leak of EVAP. |  |


# MONITOR DESCRIPTION

1. DTC P1451: Pressure sensor abnormal voltage fluctuation or being constant

If the pressure sensor output voltage fluctuates rapidly for 10 seconds, the ECM stops the EVAP system monitor. The ECM interprets this as the pressure sensor voltage fluctuating, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC.

Alternatively, if the sensor output voltage does not change for 10 seconds, the ECM interprets this as the sensor voltage being constant, and stops the monitor. The ECM then illuminates the MIL and sets the DTC.

(Both the malfunctions are detected by 2 trip detection logic).



### 2. DTC P1452: Pressure sensor voltage low

If the pressure sensor output voltage is below 0.45 V, the ECM interprets this as an open or short circuit malfunction in the pressure sensor or its circuit, and stops the EVAP system monitor. The ECM then illuminates the MIL and sets the DTC (1 trip detection logic).

DTC P1453: Pressure sensor voltage high
 If the pressure sensor voltage output is 4.9 V or more, the ECM interprets this as an open or short
 circuit malfunction in the pressure sensor or its circuit, and stops the EVAP system monitor. The ECM
 then illuminates the MIL and sets the DTC (1 trip detection logic).

# **MONITOR STRATEGY**

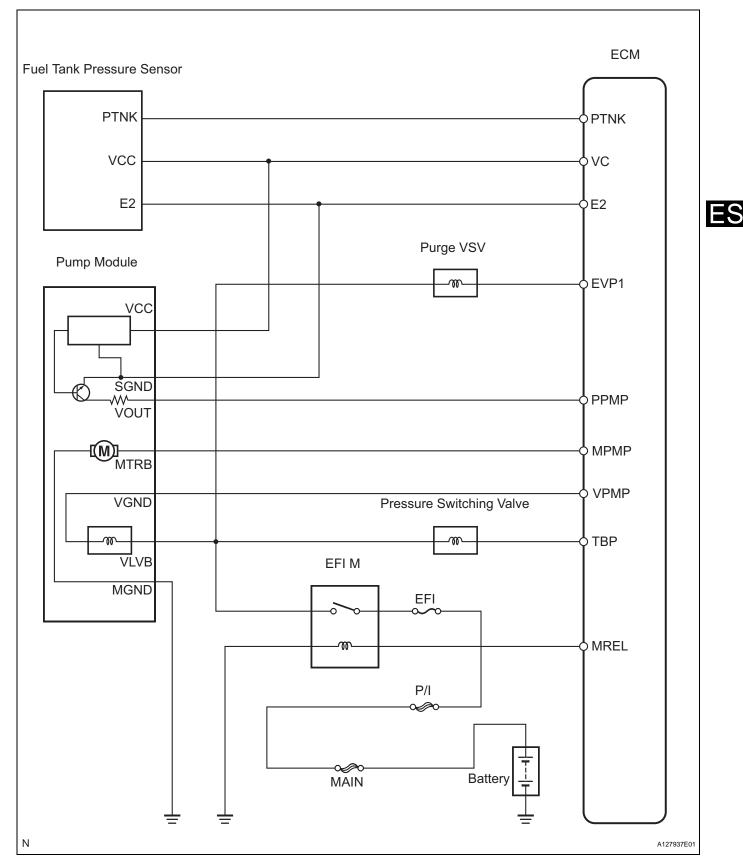
| Required Sensors/Components | Pump module                                                                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Frequency of Operation      | Once per driving cycle: P1451 sensor constant voltage<br>Continuous: P1451 sensor abnormal voltage fluctuation, P1452 and<br>P1453 |
| Duration                    | Within 10 seconds                                                                                                                  |
| MIL Operation               | 2 driving cycles                                                                                                                   |
| Sequence of Operation       | None                                                                                                                               |

#### TYPICAL ENABLING CONDITIONS P1450, P1452, P1453;

| Engine                  | Running              |
|-------------------------|----------------------|
| Time after engine start | Less than 10 seconds |

| ECT at engine start                       | 10 to 35°C (50 to 95°F) |
|-------------------------------------------|-------------------------|
| IAT at engine start                       | 10 to 35°C (50 to 95°F) |
| ECT at engine start - IAT at engine start | Less than 12°C (53.6°F) |

#### P1451:


| Although                                  | 1 (h 0, 400 (0, 000 (t))                    |
|-------------------------------------------|---------------------------------------------|
| Altitude                                  | Less than 2,400 m (8,000 ft.)               |
| Battery voltage                           | 11 V or higher                              |
| Conditions                                | Power switch ON (IG) and DLC3 connector OFF |
|                                           | or                                          |
|                                           | OBD check mode ON and idle ON               |
| Throttle position learning                | Completed                                   |
| Canister pressure sensor                  | No malfunction                              |
| IAT at engine start - ECT at engine start | -7 to 11.1°C (19.4 to 52°F)                 |
| Purge VSV and pressure switching valve    | Not operated by scan tool                   |
| ECT at engine start                       | 4.4 to 35°C (40 to 95°F)                    |
| IAT at engine start                       | 4.4 to 35°C (40 to 95°F)                    |

# **TYPICAL MALFUNCTION THRESHOLDS**

P1450:

| Fuel tank pressure                                                                          | Less than -3,999 Pa (-30 mmHg) or 1,999 Pa (15 mmHg) or more |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| P1451 (Noise Monitor):                                                                      |                                                              |
| Sensor output change 0.667 kPa or more during 5 to 15 seconds after idling and vehicle stop | 7 times or more                                              |
| P1451 (Stuck Monitor):                                                                      |                                                              |
| Not to make pass determination                                                              | 20 minutes or more                                           |
| P1452:                                                                                      |                                                              |
| Fuel tank pressure                                                                          | Less than -3,999 Pa (-30 mmHg)                               |
| P1453:                                                                                      |                                                              |
| Fuel tank pressure                                                                          | 1,999 Pa (15 mmHg) or more                                   |

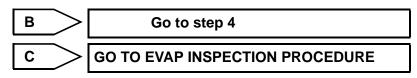
### WIRING DIAGRAM



#### **INSPECTION PROCEDURE**

#### NOTICE:

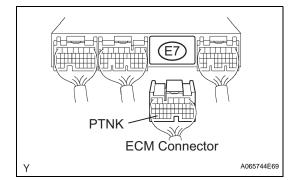
- When a vehicle is brought into the workshop, leave it as it is. Do not change the vehicle condition. For example, do not tighten the fuel tank cap.
- Do not disassemble the pump module.
- The intelligent tester is required to conduct the following diagnostic troubleshooting procedure.


|  |  | 1 |
|--|--|---|
|  |  |   |

### CONFIRM DTC AND FUEL TANK PRESSURE

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester on.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs.
- (f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DATA LIST / EVAP / VAPOR PRESS TANK.
- (g) Read the EVAP (Evaporative Emission) pressure displayed on the tester.

#### Result


| Display (DTC Output) | Test Result                          | Suspected Trouble Area                                                                                                        | Proceed to |
|----------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------|
| P1451                | -                                    | Pressure sensor                                                                                                               | С          |
| P1450 and/or P1452   | Less than -17.187 kPa (-128.93 mmHg) | <ul> <li>Wire harness/connector (ECM -<br/>pressure sensor)</li> <li>Pressure sensor</li> <li>Short in ECM circuit</li> </ul> | A          |
| P1450 and/or P1453   | More than 23.5 kPa (176.69 mmHg)     | <ul> <li>Wire harness/connector (ECM -<br/>pressure sensor)</li> <li>Pressure sensor</li> <li>Open in ECM circuit</li> </ul>  | В          |

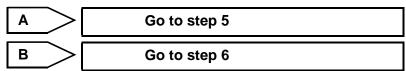




2

CHECK HARNESS AND CONNECTOR (FUEL TANK PRESSURE SENSOR - ECM)

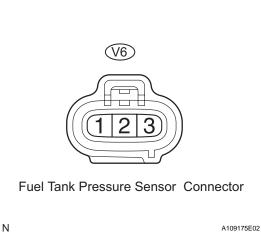



- (a) Turn the power switch OFF.
- (b) Disconnect the E7 ECM connector.
- (c) Measure the resistance between the PTNK terminal of the ECM connector and the body ground.

# .

|                       | _                                                                                                                                     |                                                                                        |              |                                                              |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------|
| 10 $\Omega$ or less   | <ul> <li>Wire harness/connector (ECM -<br/>pressure sensor)</li> <li>Short in pressure sensor circuit</li> </ul>                      |                                                                                        |              | A                                                            |
| 10 k $\Omega$ or more | <ul> <li>Wire harness/connector (ECM -<br/>pressure sensor)</li> <li>Short in ECM (included in HV Control<br/>ECU) circuit</li> </ul> |                                                                                        |              | В                                                            |
|                       | (c                                                                                                                                    | d) Reconnect the                                                                       | ECM connecto |                                                              |
|                       |                                                                                                                                       | В                                                                                      | Go to step 7 |                                                              |
| A                     |                                                                                                                                       |                                                                                        |              |                                                              |
| 3 CHECK HARNESS AND   |                                                                                                                                       | FOR (FUEL TANK                                                                         | PRESSURE S   | ENSOR - ECM)                                                 |
|                       | (a<br>(b)<br>(c)<br>(c)                                                                                                               | <ul> <li>Disconnect the</li> <li>Disconnect the</li> <li>Measure the result</li> </ul> | E7 ECM conne | essure sensor connector<br>ector.<br>en the PTNK terminal of |
| ECM Connector<br>PTNK |                                                                                                                                       |                                                                                        |              |                                                              |
|                       | A131349E01                                                                                                                            |                                                                                        |              |                                                              |

| Test Result         | Suspected Trouble Area                                    | Proceed to |
|---------------------|-----------------------------------------------------------|------------|
| 10 kΩ or more       | Short in pressure sensor circuit                          | A          |
| 10 $\Omega$ or less | Short in wire harness/connector (ECM     pressure sensor) | В          |


- (e) Reconnect the pressure sensor connector.
- Reconnect the ECM connector. (f)



ES

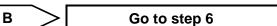
Wire Harness Side:

### 4 CHECK HARNESS AND CONNECTOR (FUEL TANK PRESSURE SENSOR - ECM)



- (a) Remove the fuel tank assembly.
- (b) Disconnect the V6 fuel tank pressure sensor connector.
- (c) Turn the power switch ON (IG).
- (d) Measure the voltage and resistance according to the value(s) in the table below.
   Standard voltage

| Tester Connection  | Specified Condition |
|--------------------|---------------------|
| V6-3 - Body ground | 4.5 to 5.0 V        |


#### Standard resistance

| Tester Connection  | Specified Condition  |
|--------------------|----------------------|
| V6-2 - Body ground | 100 $\Omega$ or less |

# Result

| Test Result                                    | Suspected Trouble Area                                     | Proceed to |
|------------------------------------------------|------------------------------------------------------------|------------|
| Voltage and resistance within standard ranges  | Open in pressure sensor circuit                            | A          |
| Voltage and resistance outside standard ranges | Open in wire harness/connector (ECM     - pressure sensor) | В          |

#### (e) Reconnect the canister connector.



A

5

#### REPLACE FUEL TANK PRESSURE SENSOR

NEXT

Go to step 8

#### 6 REPAIR OR REPLACE HARNESS AND CONNECTOR

HINT:

If the exhaust tail pipe has been removed, go to the next step before reinstalling it.

7 REPLACE ECM

NEXT

Go to step 8

ES

| 8    | CHECK WHETHER DTC OUTPUT RECURS (AFTER REPAIR)                                                                                                                                                                                                                                                                                                                                            |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NEXT | <ul> <li>(a) Connect the intelligent tester to the DLC3.</li> <li>(b) Turn the power switch ON (IG) and turn the tester on.</li> <li>(c) Wait for at least 60 seconds.</li> <li>(d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / PENDING CODES.<br/>HINT:<br/>If no pending DTC is displayed on the tester, the repair has been successfully completed.</li> </ul> |  |  |
| СОМР | LETED                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

|  | DTC | P1455 | Vapor Reducing Fuel Tank System Malfunction |
|--|-----|-------|---------------------------------------------|
|--|-----|-------|---------------------------------------------|

### DESCRIPTION

Using the heated oxygen sensor and pressure switching VSV, the ECM detects fuel leaks from inside a bladder tank the fuel tank.

Based on signals from the heated oxygen sensor while the VSV for purge flow switching valve is ON, the ECM judges if fuel is leaked from the bladder tank or not.

| DTC No. | DTC Detection Condition                                                                                                           | Trouble Area                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|         | When VSV for purge flow switching valve is<br>ON, vapor density of air which flows from<br>purge VSV into intake manifold is high | <ul><li>Hose and pipe for EVAP system</li><li>Fuel system</li><li>ECM</li></ul> |

# MONITOR DESCRIPTION

The ECM detects leakage of evaporative emissions from the bladder membrane by using the heated oxygen sensor and pressure switching valve. By opening the purge VSV and then closing the pressure switching valve, air in the outer tank is drawn into the intake manifold.

The ECM checks concentration of hydrocarbon (HC) molecules in the air drawn from the bladder membrane area. Also, the ECM checks the sensor output before and after closing the pressure switching valve. If there is change in the HC concentration when the pressure switching valve is opened or closed, the ECM will conclude that the bladder membrane is leaking. The ECM will illuminates the MIL and a DTC is set.

# **MONITOR STRATEGY**

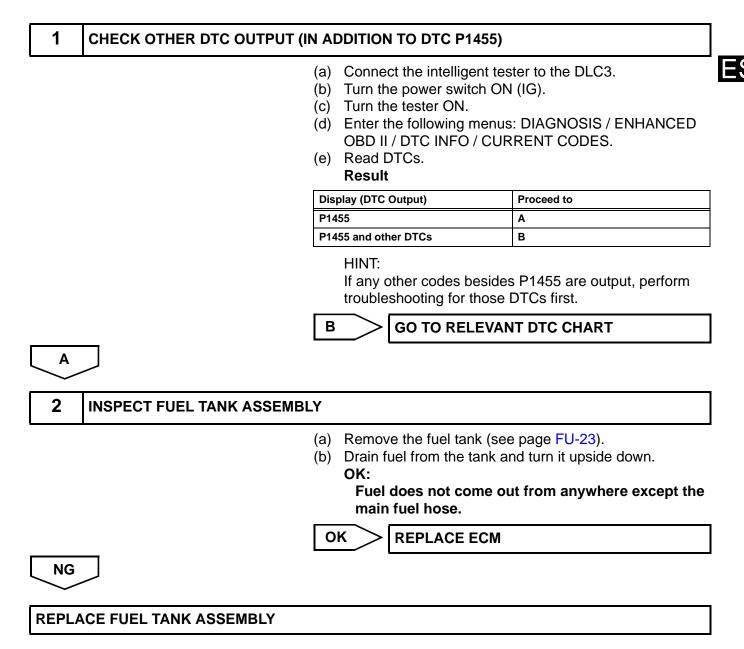
| Related DTCs                       | P1455: Vapor reducing fuel tank system leak detected (small leak) monitor |
|------------------------------------|---------------------------------------------------------------------------|
| Required sensors/components (main) | Fuel tank                                                                 |
| Frequency of operation             | Once per driving cycle                                                    |
| Duration                           | None                                                                      |
| MIL operation                      | 2 driving cycles                                                          |
| Sequence of operation              | None                                                                      |

# **TYPICAL ENABLING CONDITIONS**

| Monitor runs whenever following DTC not present | None                      |
|-------------------------------------------------|---------------------------|
| Engine                                          | Running                   |
| ECT                                             | 4.4°C (40°F) or more      |
| IAT                                             | 4.4°C (40°F) or more      |
| EVAP control system pressure sensor malfunction | Not detected              |
| Purge VSV                                       | Not detected by scan tool |
| EVAP system check                               | Not detected by scan tool |
| Battery voltage                                 | 11 V or higher            |
| Purge duty cycle                                | 15% or more               |

# **TYPICAL MALFUNCTION THRESHOLDS**

| Vapor concentration in purge air                             | Less than -7 to -4% (depending on intake air temperature) |
|--------------------------------------------------------------|-----------------------------------------------------------|
| FAF smoothing value                                          | Less than 5%                                              |
| VSV for purge flow switching valve                           | No malfunction                                            |
| Purge air volume after purge flow switching valve monitoring | 2 g or more                                               |


### MONITOR RESULT

Refer to detailed information (see page ES-15).

### **INSPECTION PROCEDURE**

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.



| DTC | P2102 | Throttle Actuator Control Motor Circuit Low  |
|-----|-------|----------------------------------------------|
| DTC | P2103 | Throttle Actuator Control Motor Circuit High |

### DESCRIPTION

The throttle motor is operated by the ECM and it opens and closes the throttle valve.

The opening angle of the throttle valve is detected by the throttle position sensor which is mounted on the throttle body. The throttle position sensor provides feedback to the ECM. This feedback allows the ECM to control the throttle motor and monitor the throttle opening angle as the ECM responds to driver inputs. HINT:

| This Electrical | Throttle Control S | System (FTCS | ) does not use a throttle cable. |
|-----------------|--------------------|--------------|----------------------------------|
|                 |                    |              |                                  |

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                              | Trouble Area                                                                                                                                                     |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P2102   | Conditions (a) and (b) continue for 2.0<br>seconds:<br>(a) Throttle control motor output duty is 80%<br>or more<br>(b) Throttle control motor current is less than<br>0.5 A                                                                                          | <ul> <li>Open in throttle control motor circuit</li> <li>Throttle control motor</li> <li>ECM</li> </ul>                                                          |
| P2103   | <ul> <li>Following conditions are met.</li> <li>Hybrid IC diagnosis signal: Fail</li> <li>Hybrid IC current limiter port: Fail<br/>When electric throttle actuator is ON (i.e.<br/>actuator power ON or actuator power<br/>supply voltage is 8 V or more)</li> </ul> | <ul> <li>Short in throttle control motor circuit</li> <li>Throttle control motor</li> <li>Throttle valve</li> <li>Throttle body assembly</li> <li>ECM</li> </ul> |

### MONITOR DESCRIPTION

The ECM monitors the flow of electrical current through the electronic throttle motor, and detects malfunction or open circuits in the throttle motor based on the value of the electrical current. When the current deviates from the standard values, the ECM concludes that there is a fault in the throttle motor. Or, if the throttle valve is not functioning properly (for example, stuck ON), the ECM concludes that there is a fault in the throttle motor and turns on the MIL and a DTC is set. Example:

When the current is more than 10 A. Or, the current is less than 0.5 A when the motor driving duty ratio is more than 80%. The ECM concludes that the current is deviated from the standard values, turns on the MIL and a DTC is set.

# FAIL-SAFE

If the Electronic Throttle Control System (ETCS) has a malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel injection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue to drive.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the power switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

# **MONITOR STRATEGY**

P2102: Throttle actuator control motor current (low current)

| Related DTCs                | P2102: Throttle actuator control motor current (low current) |
|-----------------------------|--------------------------------------------------------------|
| Required sensors/components | Throttle actuator motor                                      |
| Frequency of operation      | Continuous                                                   |
| Duration                    | 2 seconds                                                    |
| MIL operation               | Immediately                                                  |

| Sequence of operation | None |
|-----------------------|------|
|                       |      |

#### P2103: Throttle actuator control motor current (high current)

| Related DTCs                | P2103: Throttle actuator control motor current (high current) |
|-----------------------------|---------------------------------------------------------------|
| Required sensors/components | Throttle actuator motor                                       |
| Frequency of operation      | Continuous                                                    |
| Duration                    | 0.6 seconds                                                   |
| MIL operation               | Immediately                                                   |
| Sequence of operation       | None                                                          |

# **TYPICAL ENABLING CONDITIONS**

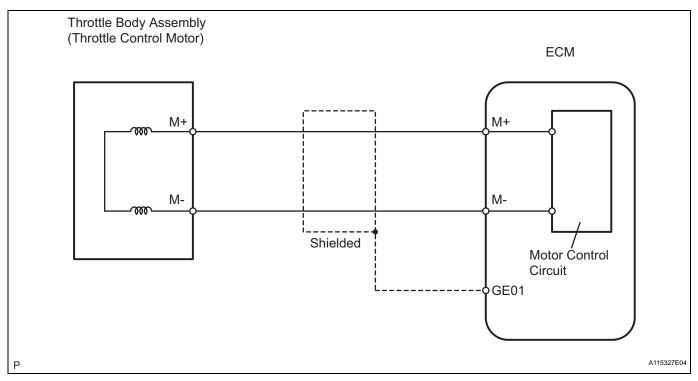
#### P2102: Throttle actuator control motor current (low current)

| The monitor will run whenever the following DTCs are not present | None            |
|------------------------------------------------------------------|-----------------|
| Throttle motor                                                   | ON              |
| Difference between motor current of present and 0.016 second ago | Less than 0.2 A |

#### P2103: Throttle actuator control motor current (high current)

| The monitor will run whenever the following DTCs are not present | None |
|------------------------------------------------------------------|------|
| Throttle motor                                                   | ON   |

# **TYPICAL MALFUNCTION THRESHOLDS**

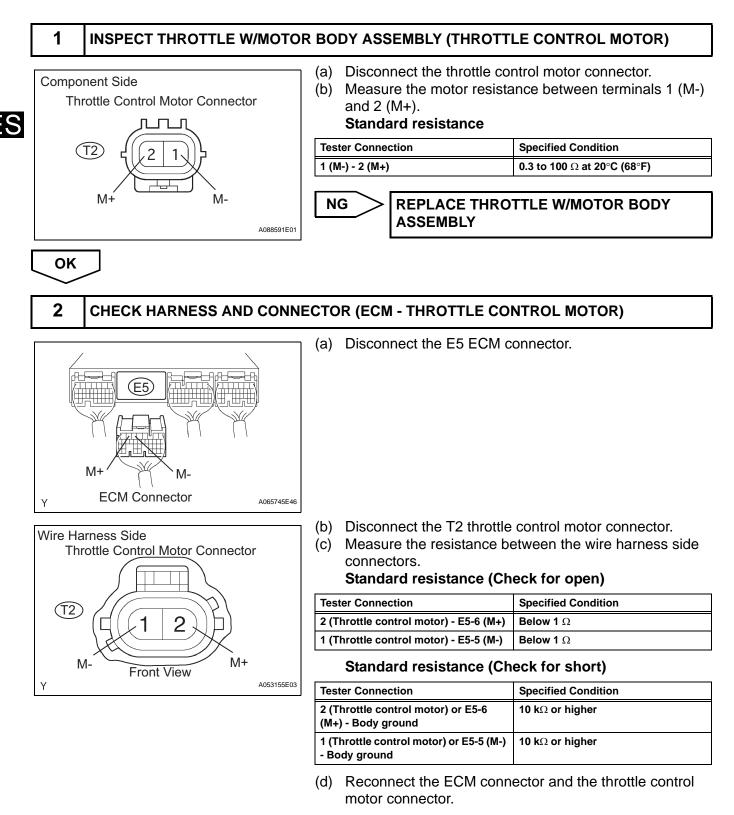

#### P2102: Throttle actuator control motor current (low current)

| Throttle motor current | Less than 0.5 A (when motor drive duty is 80% or more) |
|------------------------|--------------------------------------------------------|
|                        |                                                        |

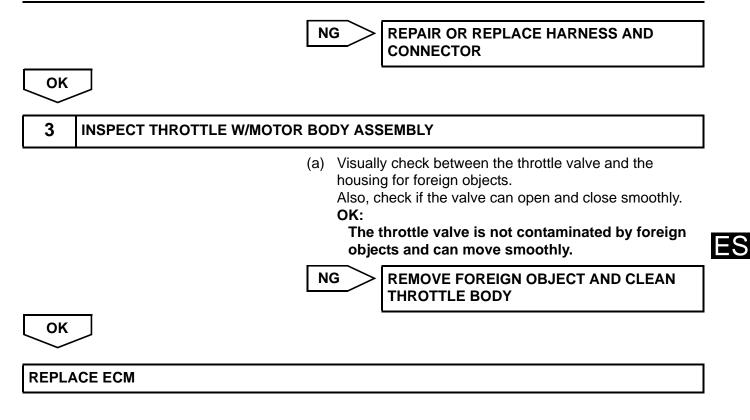
#### P2103: Throttle actuator control motor current (high current)

|           |  | 5    |
|-----------|--|------|
| Hybrid IC |  | Fail |
|           |  |      |

### WIRING DIAGRAM




ES


### **INSPECTION PROCEDURE**

#### HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.







| DTC | P2111 | Throttle Actuator Control System - Stuck Open      |
|-----|-------|----------------------------------------------------|
| DTC | P2112 | Throttle Actuator Control System - Stuck<br>Closed |

### DESCRIPTION

The throttle motor is operated by the ECM and it opens and closes the throttle valve using gears. The opening angle of the throttle valve is detected by the throttle position sensor, which is mounted on the throttle body. The throttle position sensor provides to ECM with feedback to control the throttle motor and set the throttle valve angle in response to driver input.

#### HINT:

This Electrical Throttle Control System (ETCS) does not use a throttle cable.

| DTC No. | DTC Detection Condition                          | Trouble Area                                                                                                                      |
|---------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| P2111   | Throttle motor locked during ECM orders to open  | <ul> <li>Throttle control motor circuit</li> <li>Throttle control motor</li> <li>Throttle body</li> <li>Throttle valve</li> </ul> |
| P2112   | Throttle motor locked during ECM orders to close | <ul> <li>Throttle control motor circuit</li> <li>Throttle control motor</li> <li>Throttle body</li> <li>Throttle valve</li> </ul> |

### MONITOR DESCRIPTION

The ECM concludes that there is malfunction of the ETCS when the throttle valve remains at a fixed angle despite high drive current supplying from the ECM. The ECM will turn on the MIL and a DTC is set.

# FAIL-SAFE

If the Electronic Throttle Control System (ETCS) has malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel injection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue to drive.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the power switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

# MONITOR DESCRIPTION

| Related DTCs            | P2111: Throttle motor actuator lock (open)<br>P2112: Throttle motor actuator lock (closed) |
|-------------------------|--------------------------------------------------------------------------------------------|
| Main sensors/components | Throttle actuator motor                                                                    |
| Frequency of operation  | Continuous                                                                                 |
| Duration                | 0.5 seconds                                                                                |
| MIL operation           | Immediately                                                                                |
| Sequence of operation   | None                                                                                       |

# TYPICAL ENABLING CONDITIONS

#### P2111:

| The monitor will run whenever the following DTCs are not present | None        |
|------------------------------------------------------------------|-------------|
| Throttle motor current                                           | 2 A or more |
| Throttle motor duty to open                                      | 80% or more |

#### P2112:

| The monitor will run whenever the following DTCs are not present | None        |
|------------------------------------------------------------------|-------------|
| Throttle motor current                                           | 2 A or more |
| Throttle motor duty to close                                     | 80% or more |

# **TYPICAL MALFUNCTION THRESHOLDS**

| Difference between throttle position sensor output voltage of present | Less than 0.1 V |
|-----------------------------------------------------------------------|-----------------|
| and 16 milliseconds ago                                               |                 |

# WIRING DIAGRAM

Refer to DTC P2102 (see page ES-330).

### **INSPECTION PROCEDURE**

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1 CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P2111 AND/OR P2112)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

| Display (DTC output)           | Proceed to |
|--------------------------------|------------|
| P2111 or P2112                 | A          |
| P2111 or P2112, and other DTCs | В          |

#### HINT:

If any other codes besides P2111 and/or P2112 are output, perform troubleshooting for those DTCs first.

В

#### GO TO RELEVANT DTC CHART

\_ A

2

# INSPECT THROTTLE W/MOTOR BODY ASSEMBLY (VISUALLY CHECK THROTTLE VALVE)

(a) Check for contamination between the throttle valve and the housing. If necessary, clean the throttle body. And check that the throttle valve moves smoothly.

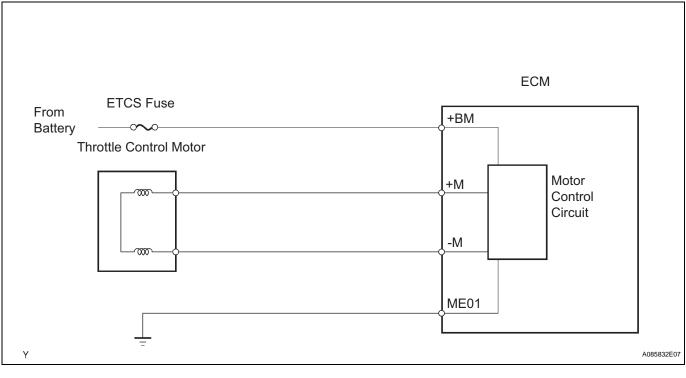
REPLACE THROTTLE W/MOTOR BODY ASSEMBLY

E

| 3 | CHECK IF DTC OUTPUT RECURS (D                               | TC P2111 AND/OR P21                                                                                                                                                                                                                   | 12)                                                                                                                                              |
|---|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a)<br>(b)<br>(c)<br>(d)<br>(e)<br>(f)<br>(g)<br>(h)<br>(i) | Turn the power switch C<br>Turn the tester ON.<br>Clear the DTC.<br>Put the engine in inspec<br>Start the engine, and de<br>accelerator pedal quickl<br>Enter the following men<br>OBD II / DTC INFO / CL<br>Start the engine, and de | DN (IG).<br>etion mode (see page ES-1).<br>press and release the<br>y (fully open and fully close).<br>us: DIAGNOSIS / ENHANCED<br>JRRENT CODES. |
|   | Disp                                                        | blay (DTC output)                                                                                                                                                                                                                     | Proceed to                                                                                                                                       |
|   | No d                                                        | output                                                                                                                                                                                                                                | A                                                                                                                                                |
|   |                                                             | 11 and/or P2112                                                                                                                                                                                                                       | В                                                                                                                                                |

# CHECK FOR INTERMITTENT PROBLEMS

| DTC | I P711X | Throttle Actuator Control Motor Current Range / Performance |
|-----|---------|-------------------------------------------------------------|


### DESCRIPTION

The Electronic Throttle Control System (ETCS) has a dedicated power supply circuit. The voltage (+BM) is monitored and when the voltage is low (less than 4 V), the ECM concludes that the ETCS has a fault and current to the throttle control motor is cut.

When the voltage becomes unstable, the ETCS itself becomes unstable. For this reason, when the voltage is low, the current to the motor is cut. If repairs are made and the system has returned to normal, turn the power switch OFF. The ECM then allows current to flow to the motor and the motor can be restarted.

#### HINT:

This Electrical Throttle Control System (ETCS) does not use a throttle cable.



| DTC No. | DTC Detection Condition           | Trouble Area                                                                          |
|---------|-----------------------------------|---------------------------------------------------------------------------------------|
| P2118   | Open in ETCS power source circuit | <ul> <li>Open in ETCS power source circuit</li> <li>ETCS fuse</li> <li>ECM</li> </ul> |

# **MONITOR DESCRIPTION**

The ECM monitors the battery supply voltage applied to the electronic throttle motor. When the power supply voltage drops below the threshold, the ECM concludes that there is an open in the power supply circuit. A DTC is set and the MIL is turned on.

# FAIL-SAFE

If the Electronic Throttle Control System (ETCS) has malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel injection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue to drive.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

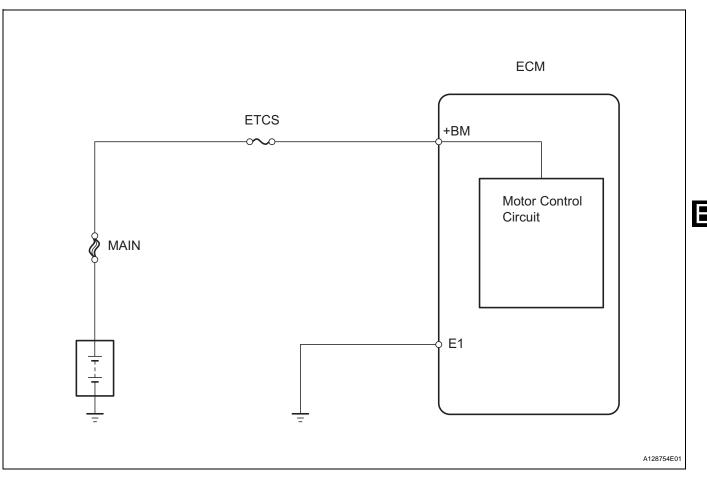
If a "pass" condition is detected and then the power switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

# **MONITOR STRATEGY**

| Related DTCs                | P2118: Throttle actuator motor power supply line range check (low voltage) |
|-----------------------------|----------------------------------------------------------------------------|
| Required sensors/components | Throttle actuator motor                                                    |
| Frequency of operation      | Continuous                                                                 |
| Duration                    | 0.8 seconds                                                                |
| MIL operation               | Immediately                                                                |
| Sequence of operation       | None                                                                       |

# **ES** TYPICAL ENABLING CONDITIONS

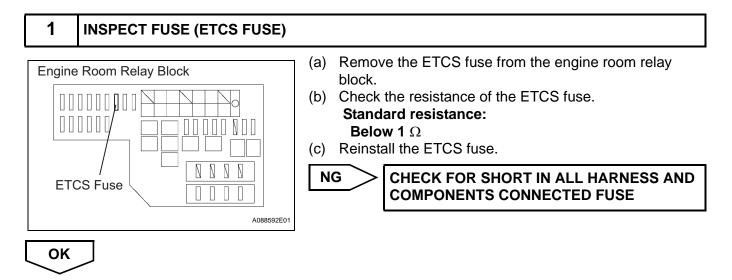
| The monitor will run whenever the following DTCs are not present | None        |
|------------------------------------------------------------------|-------------|
| Actuator power                                                   | ON          |
| Battery voltage                                                  | 8 V or more |

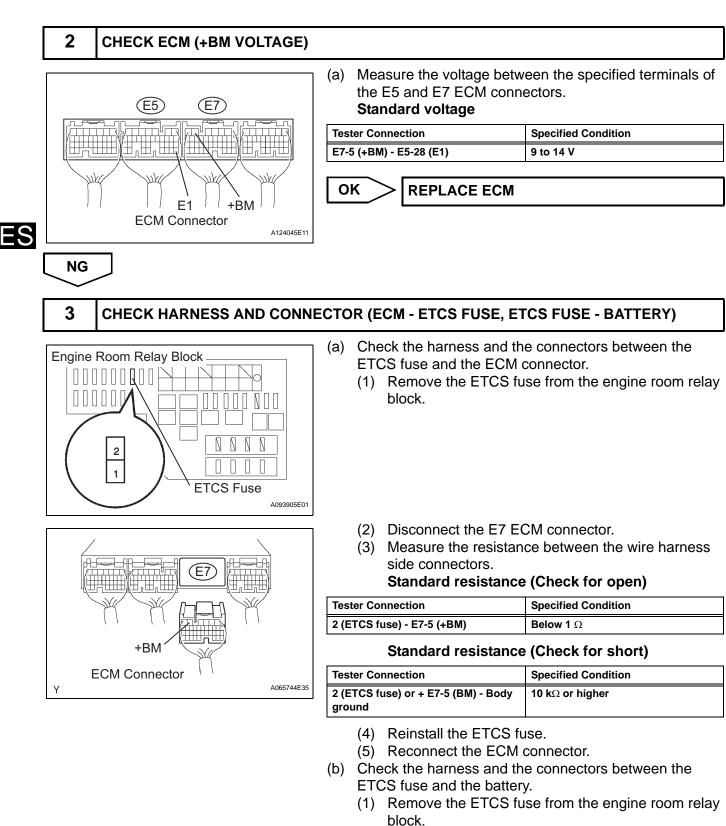

# **TYPICAL MALFUNCTION THRESHOLDS**

| Throttle actuator motor power supply voltage | Less than 4 V |
|----------------------------------------------|---------------|

# COMPONENT OPERATING RANGE

| Throttle actuator motor power supply voltage 9 to 14 V |
|--------------------------------------------------------|
|--------------------------------------------------------|


### WIRING DIAGRAM




### **INSPECTION PROCEDURE**

HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.





- (2) Disconnect the positive battery terminal.
- (3) Measure the resistance between the wire harness side connectors.

#### Standard resistance (Check for open)

| Tester Connection                         | Specified Condition |
|-------------------------------------------|---------------------|
| Battery positive terminal - 1 (ETCS fuse) | Below 1 $\Omega$    |

#### Standard resistance (Check for short)

| Tester Connection                                        | Specified Condition     |
|----------------------------------------------------------|-------------------------|
| Battery positive terminal or 1 (ETCS fuse) - Body ground | 10 k $\Omega$ or higher |

- (4) Reinstall the ETCS fuse.
- (5) Reconnect the positive battery terminal.



OK

CHECK AND REPLACE FUSIBLE LINK BLOCK ASSEMBLY

ES

| DTC |
|-----|
|-----|

| P2119 | ٦<br>F |
|-------|--------|
|-------|--------|

# Throttle Actuator Control Throttle Body Range / Performance

# DESCRIPTION

The Electric Throttle Control System (ETCS) is composed of a throttle motor that operates the throttle valve, a throttle position sensor that detects the opening angle of the throttle valve, an accelerator pedal position sensor that detects the accelerator pedal position, and the ECM that controls the ETCS system. The ECM operates the throttle motor to position the throttle valve for proper response to driver inputs. The throttle position sensor, mounted on the throttle body, provides this signal to the ECM so that the ECM can regulate the throttle motor.

| _ [ | DTC No. | DTC Detection Condition                                                | Trouble Area                                                   |
|-----|---------|------------------------------------------------------------------------|----------------------------------------------------------------|
|     | P2119   | Throttle opening angle continues to vary greatly from its target angle | <ul><li>Electric throttle control system</li><li>ECM</li></ul> |

# MONITOR DESCRIPTION

The ECM determines the "actual" throttle valve angle based on the throttle position sensor signal. The "actual" throttle valve position is compared to the "target" throttle valve position commanded by the ECM. If the difference of these two values exceeds a specified limit, the ECM interprets this as a fault in the ETCS system. The ECM turns on the MIL and a DTC is set.

# FAIL-SAFE

If the Electronic Throttle Control System (ETCS) has malfunction, the ECM cuts off current to the throttle control motor. The throttle control valve returns to a predetermined opening angle (approximately 16°) by the force of the return spring. The ECM then adjusts the engine output by controlling the fuel injection (intermittent fuel-cut) and ignition timing in accordance with the accelerator pedal opening angle to enable the vehicle to continue to drive.

If the accelerator pedal is depressed firmly and slowly, the vehicle can be driven slowly.

If a "pass" condition is detected and then the power switch is turned OFF, the fail-safe operation will stop and the system will return to normal condition.

# **MONITOR STRATEGY**

| Related DTCs                | P2119: Electronic throttle control system failure                        |
|-----------------------------|--------------------------------------------------------------------------|
| Required sensors/components | Main:<br>Throttle actuator motor<br>Related:<br>Throttle position sensor |
| Frequency of operation      | Continuous                                                               |
| Duration                    | Within 1 second                                                          |
| MIL operation               | Immediately                                                              |
| Sequence of operation       | None                                                                     |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None |
|------------------------------------------------------------------|------|
|                                                                  |      |

# **TYPICAL MALFUNCTION THRESHOLDS**

| Difference between commanded throttle valve position and current | 0.3 V or more |
|------------------------------------------------------------------|---------------|
| throttle valve position                                          |               |

### COMPONENT OPERATING RANGE

Commanded throttle valve position

Same as current throttle valve position

### WIRING DIAGRAM

Refer to DTC P2102 (see page ES-330).

#### **INSPECTION PROCEDURE**

#### HINT:

1

Α

2

Read freeze frame data using intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

ES

# CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P2119)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

| Display (DTC Output) | Proceed to |
|----------------------|------------|
| P2119                | Α          |
| P2119 and other DTCs | В          |

#### HINT:

If any other codes besides P2119 are output, perform troubleshooting for those DTCs first.

B GO TO RELEVANT DTC CHART

CHECK IF DTC OUTPUT RECURS

- (a) Clear the DTCs (see page ES-29).
- (b) Allow the engine to idle for 15 seconds.
- (c) Securely apply the parking brake, and place the shift position in D.
- (d) Depress the brake pedal securely and the accelerator pedal fully for 5 seconds.
- (e) Read DTCs. HINT:

Actual throttle position (TP) sensor voltage can be confirmed using the intelligent tester [DATA LIST / USER DATA /THROTTLE POS #1].

#### OK:

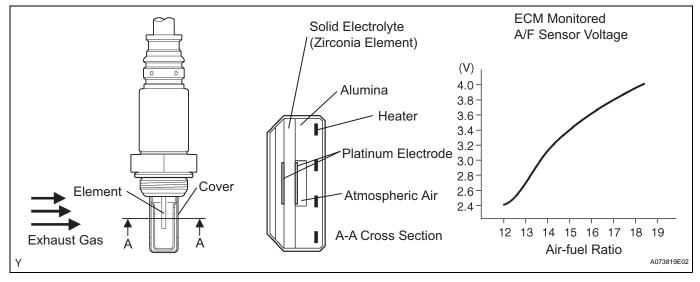
No DTC output.

NG

### REPLACE THROTTLE W/MOTOR BODY ASSEMBLY

| DTC | P2195 | Oxygen (A/F) Sensor Signal Stuck Lean (Bank 1<br>Sensor 1) |
|-----|-------|------------------------------------------------------------|
| DTC | P2196 | Oxygen (A/F) Sensor Signal Stuck Rich (Bank 1<br>Sensor 1) |

# DESCRIPTION


The air-fuel ratio (A/F) sensor provides output voltage\* which is almost equal to the existing air-fuel ratio. The A/F sensor output voltage is used to provide feedback for the ECM to control the air-fuel ratio. With the A/F sensor output, the ECM can determine deviation from the stoichiometric air-fuel ratio and control proper injection time. If the A/F sensor is malfunctioning, the ECM is unable to accurately control the air-fuel ratio.

The A/F sensor is equipped with a heater which heats the zirconia element. The heater is also controlled by the ECM. When the intake air volume is low (the temperature of the exhaust gas is low), current flows to the heater to heat the sensor to facilitate detection of accurate oxygen concentration.

The A/F sensor is a planar type. Compared to a conventional type, the sensor and heater portions are narrower. Because the heat of the heater is conducted through the alumina to zirconia (of the sensor portion), sensor activation is accelerated.

To obtain a high purification rate of carbon monoxides (CO), hydrocarbons (HC) and nitrogen oxides (NOx) components of the exhaust gas, a three-way catalytic converter is used. The converter is most efficient when the air-fuel ratio is maintained near the stoichiometric air-fuel ratio.

\*: The voltage value changes inside the ECM only.



| DTC No. | DTC Detection Condition                                                                                                                                                                                   | Trouble Area                                                                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P2195   | Conditions (a) and (b) continue for 2 seconds<br>or more :<br>(a) A/F sensor voltage is more than 3.8 V.<br>(b) Rear oxygen sensor voltage is 0.15 V or<br>more.<br>A/F sensor current is 3.6 mA or more. | <ul> <li>Open or short in A/F sensor (bank 1 sensor 1) circuit</li> <li>A/F sensor (bank 1 sensor 1)</li> <li>A/F sensor heater</li> <li>Integration relay</li> <li>A/F sensor heater and relay circuit</li> <li>Air induction system</li> <li>Fuel pressure</li> <li>Injector</li> <li>PCV hose connection</li> <li>ECM</li> </ul> |

| DTC No. | DTC Detection Condition                                                                                                                                                                                      | Trouble Area                                                                                                                                                                                                                                                                                                                        |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P2196   | Conditions (a) and (b) continue for 2 seconds<br>or more :<br>(a) A/F sensor voltage is less than 2.8 V.<br>(b) Rear oxygen sensor voltage is less than<br>0.6 V.<br>A/F sensor current is less than 1.4 mA. | <ul> <li>Open or short in A/F sensor (bank 1 sensor 1) circuit</li> <li>A/F sensor (bank 1 sensor 1)</li> <li>A/F sensor heater</li> <li>Integration relay</li> <li>A/F sensor heater and relay circuit</li> <li>Air induction system</li> <li>Fuel pressure</li> <li>Injector</li> <li>PCV hose connection</li> <li>ECM</li> </ul> |

HINT:

- Sensor 1 refers to the sensor closest to the engine assembly.
- After confirming DTC P2195 and P2196, use the intelligent tester to confirm voltage output of A/F sensor (AFS B1 S1) from the "DIAGNOSIS / ENHANCED OBD II / DATA LIST / PRIMARY."
- The A/F sensor's output voltage and the short-term fuel trim value can be read using the intelligent tester.
- The ECM controls the voltage of the A1A+, and A1A- terminals of the ECM to a fixed voltage. Therefore, it is impossible to confirm the A/F sensor output voltage without the intelligent tester.
- The OBD II scan tool (excluding the intelligent tester) displays the one fifth of the A/F sensor output voltage which is displayed on the intelligent tester.

# MONITOR DESCRIPTION

Under the air-fuel ratio feedback control, if the voltage output of the A/F sensor indicates RICH or LEAN for a certain period of time or more, the ECM concludes that there is a fault in the A/F sensor system. The ECM will turn on the MIL and a DTC is set.

If the A/F sensor voltage output is less than 2.8 V (indicates very RICH) 10 seconds even though voltage output of the heated oxygen sensor output voltage is less than 0.6 V, the ECM sets DTC P2196 Also, if the heated oxygen sensor output voltage is 0.15 V or more, but the A/F sensor voltage output is more than 3.8 V (indicates very LEAN) for 10 seconds, DTC P2195 or is set.

# **MONITOR STRATEGY**

| Related DTCs                | P2195: A/F sensor signal stuck lean<br>P2196: A/F sensor signal stuck rich |
|-----------------------------|----------------------------------------------------------------------------|
| Required sensors/components | Main: A/F sensor<br>Related: Heated oxygen sensor                          |
| Frequency of operation      | Continuous                                                                 |
| Duration                    | 10 seconds                                                                 |
| MIL operation               | 2 driving cycles                                                           |
| Sequence of operation       | None                                                                       |



# TYPICAL ENABLING CONDITIONS

| Monitor runs whenever following DTCs not present | P0031, P0032 (A/F sensor heater - Sensor 1) |  |
|--------------------------------------------------|---------------------------------------------|--|
|                                                  | P0037, P0038 (O2 sensor heater - Sensor 2)  |  |
|                                                  | P0100 - P0103 (MAF meter)                   |  |
|                                                  | P0110 - P0113 (IAT sensor)                  |  |
|                                                  | P0115 - P0118 (ECT sensor)                  |  |
|                                                  | P0120 - P0223, P2135 (TP sensor)            |  |
|                                                  | P0125 (Insufficient ECT for Closed Loop)    |  |
|                                                  | P0136 (O2 sensor - sensor 2)                |  |
|                                                  | P0171, P0172 (Fuel system)                  |  |
|                                                  | P0300 - P0304 (Misfire)                     |  |
|                                                  | P0335 (CKP sensor)                          |  |
|                                                  | P0340 (CMP sensor)                          |  |
|                                                  | P0455, P0456 (EVAP system)                  |  |
|                                                  | P0500 (VSS)                                 |  |

#### Sensor voltage detection monitor (Lean side malfunction P2195):

| Duration while all of following conditions met | 2 seconds or more  |
|------------------------------------------------|--------------------|
| Rear HO2 sensor voltage                        | 0.15 V or more     |
| Time after engine start                        | 30 seconds or more |
| A/F sensor status                              | Activated          |
| Fuel system status                             | Closed-loop        |
| Engine                                         | Running            |

#### Sensor voltage detection monitor (Rich side malfunction P2196):

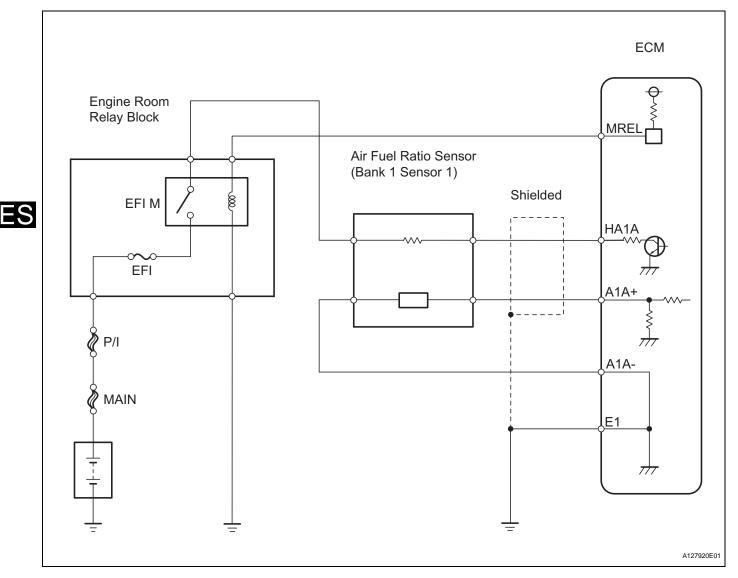
| Duration while all of following conditions met | 2 seconds or more  |
|------------------------------------------------|--------------------|
| Rear HO2 sensor voltage                        | Below 0.6 V        |
| Time after engine start                        | 30 seconds or more |
| A/F sensor status                              | Activated          |
| Fuel system status                             | Closed-loop        |
| Engine                                         | Running            |

#### Sensor current detection monitor P2195 and P2196:

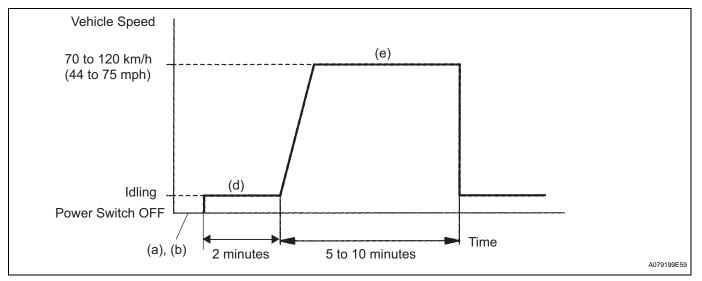
| Battery voltage             | 11 V or more              |  |
|-----------------------------|---------------------------|--|
| Atmospheric pressure        | 76 kPa (570 mmHg) or more |  |
| A/F sensor status           | Activated                 |  |
| Continuous time of fuel cut | 3 to 10 seconds           |  |
| ECT                         | 75°C (167°F) or more      |  |

### **TYPICAL MALFUNCTION THRESHOLDS**

#### Sensor voltage detection monitor (Lean side malfunction P2195)


| A/F sensor output voltage                                      | More than 3.8 V |  |  |
|----------------------------------------------------------------|-----------------|--|--|
| Sensor voltage detection monitor (Rich side malfunction P2196) |                 |  |  |
| A/F sensor output voltage                                      | Less than 2.8 V |  |  |
| Sensor current detection monitor P2195                         |                 |  |  |
| A/F sensor current                                             | 3.6 mA or more  |  |  |

#### Sensor current detection monitor P2196


| A/F sensor current | Less than 1.4 mA |
|--------------------|------------------|
|--------------------|------------------|

ES

### WIRING DIAGRAM



# **CONFIRMATION DRIVING PATTERN**



(a) Connect the intelligent tester to the DLC3.

(b) Switch the ECM from normal mode to check mode using the intelligent tester (see page ES-29).

- (c) Put the engine in inspection mode (see page ES-1).
- (d) Start the engine and warm it up with all the accessory switches OFF.

(e) Deactivate the inspection mode and drive the vehicle at 70 to 120 km/h (44 to 75 mph) for 5 to 10 minutes (the engine must be run during monitoring).

HINT:

If malfunction exists, the MIL will be illuminated during step (d). **NOTICE:** 

- If the conditions in this test are not strictly followed, no malfunction will be detected. If you do not have the intelligent tester, turn the power switch OFF after performing steps (d) and (e), then perform steps (d) and (e) again.
- Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.

# **INSPECTION PROCEDURE**

HINT:

- Although each DTC title says "oxygen sensor", these DTCs are related to the A/F sensor.
- Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform the ACTIVE TEST A/F CONTROL operation. HINT:

The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%. (1) Connect the intelligent tester to the DLC3.

(2) Turn the power switch ON (IG).

(3) Put the engine in inspection mode (see page ES-1).

(4) Warm up the engine by running the engine at 2,500 rpm, depressing the accelerator pedal more than 60% for approximately 90 seconds.

(5) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.

(6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

**Result:** 

A/F sensor reacts in accordance with increase and decrease of injection volume:

+25%  $\rightarrow$  rich output: Less than 3.0 V

-12.5%  $\rightarrow$  lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume:  $+25\% \rightarrow$  rich output: More than 0.55 V

-12.5%  $\rightarrow$  lean output: Less than 0.4 V

### NOTICE:

The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.

| Case | A/F Sensor (Sensor 1) Output Voltage                  |    | HO2 Sensor (Sensor 2) Output Voltage                  |     | Main Suspected<br>Trouble Area |
|------|-------------------------------------------------------|----|-------------------------------------------------------|-----|--------------------------------|
| 1    | Injection Volume<br>+25%<br>-12.5%                    | ♠  | Injection Volume<br>+25%<br>-12.5%                    | ♠[[ |                                |
|      | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V | ок | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | ок  |                                |

| Case | A/F Sensor (Sensor 1) Output Voltage                                    |                | HO2 Sensor (Sensor 2) Output Voltage                                               |       | Main Suspected<br>Trouble Area                                                        |  |
|------|-------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|--|
|      | Injection Volume<br>+25%<br>-12.5%                                      | ♠              | Injection Volume<br>+25%<br>-12.5%                                                 | ♠     | • A/F sensor                                                                          |  |
| 2    | Output Voltage<br>Almost<br>no reaction                                 | NG             | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V                              | ок    | <ul> <li>A/F sensor heater</li> <li>A/F sensor circuit</li> </ul>                     |  |
| 3    | Injection Volume<br>+25%<br>-12.5%                                      | <b>↑      </b> | Injection Volume<br>+25%<br>-12.5%                                                 | ♠ [ ] | <ul> <li>HO2 sensor</li> <li>HO2 sensor heater</li> <li>HO2 sensor circuit</li> </ul> |  |
| 3    | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V                   | ок             | Output Voltage<br>Almost<br>no reaction                                            | NG    |                                                                                       |  |
|      | Injection Volume         Injection Volume           +25%         -12.5% | ♠              | <ul> <li>Fuel Injector</li> <li>Fuel pressure</li> <li>Gas leakage from</li> </ul> |       |                                                                                       |  |
| 4    | Output Voltage<br>Almost<br>no reaction                                 | NG             | Output Voltage<br>Almost<br>no reaction                                            | NG    | exhaust system (Air-<br>fuel ratio extremely<br>or lean rich)                         |  |

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

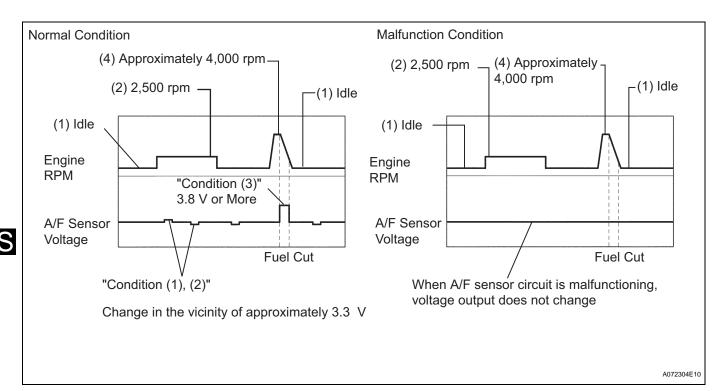
To display the graph, enter ACTIVE TEST/ A/F CONTROL/USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button. HINT:

- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- A high A/F sensor voltage could be caused by a RICH air-fuel mixture. Check the conditions that would cause the engine to run with the RICH air-fuel mixture.
- A low A/F sensor voltage could be caused by a LEAN air-fuel mixture. Check the conditions that would cause the engine to run with the LEAN air-fuel mixture.

# 1 CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC A/F SENSOR DTCS)

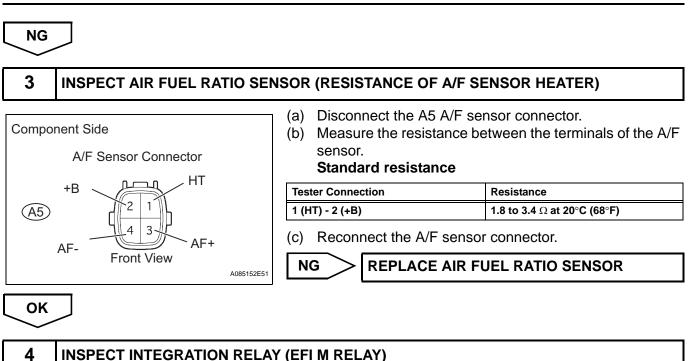
- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs.

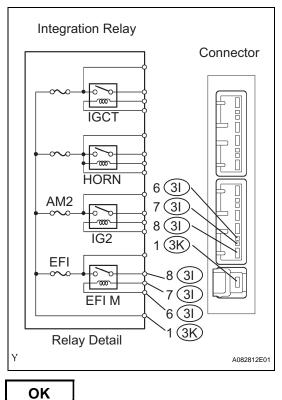
| Result |
|--------|
|--------|


| Display (DTC output)                   | Proceed to |
|----------------------------------------|------------|
| A/F sensor circuit DTC                 | A          |
| A/F sensor circuit DTCs and other DTCs | В          |

HINT:

If any other codes besides A/F sensor DTCs are output, perform troubleshooting for those DTCs first.


GO TO RELEVANT DTC CHART В Α 2 READ VALUE OF INTELLIGENT TESTER (OUTPUT VOLTAGE OF A/F SENSOR) (a) Connect the intelligent tester to the DLC 3. (b) Put the engine in inspection mode (see page ES-1). (c) Warm up the A/F sensors (bank 1 sensor 1) by running the engine at 2,500 rpm with the accelerator pedal depressed more than 60 % for approximately 90 seconds. (d) Read A/F sensor voltage output on the intelligent tester. (e) Enter the following menus: ENHANCED OBD II / SNAPSHOT / MANUAL SNAPSHOT / USER DATA. Select "AFS B1 S1/ENGINE SPD" and press button (f) "YES". (g) Monitor the A/F sensor voltage carefully. (h) Check the A/F sensor voltage output under the following conditions: (1) Put the engine in inspection mode and allow the engine to idle for 30 seconds. (2) Put the engine in inspection mode and running the engine at 2,500 rpm with the accelerator pedal depressed more than 60% (where engine RPM is not suddenly changed). (3) Deactivate the inspection mode and drive the vehicle with shift position "B" range. (4) Accelerate the vehicle to 70 km/h (44 mph) and quickly release the accelerator pedal so that the throttle valve is fully closed. CAUTION: Strictly observe of posted speed limits, traffic laws, and road conditions when performing these drive patterns. Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result. OK: Condition (1) and (2) Voltage changes in the vicinity of 3.3 V (between approximately 3.1 to 3.5 V) as shown in the illustration. Condition (4) A/F sensor voltage increases to 3.8 V or more during engine deceleration (when fuel cut) as shown in the


engine decelerat



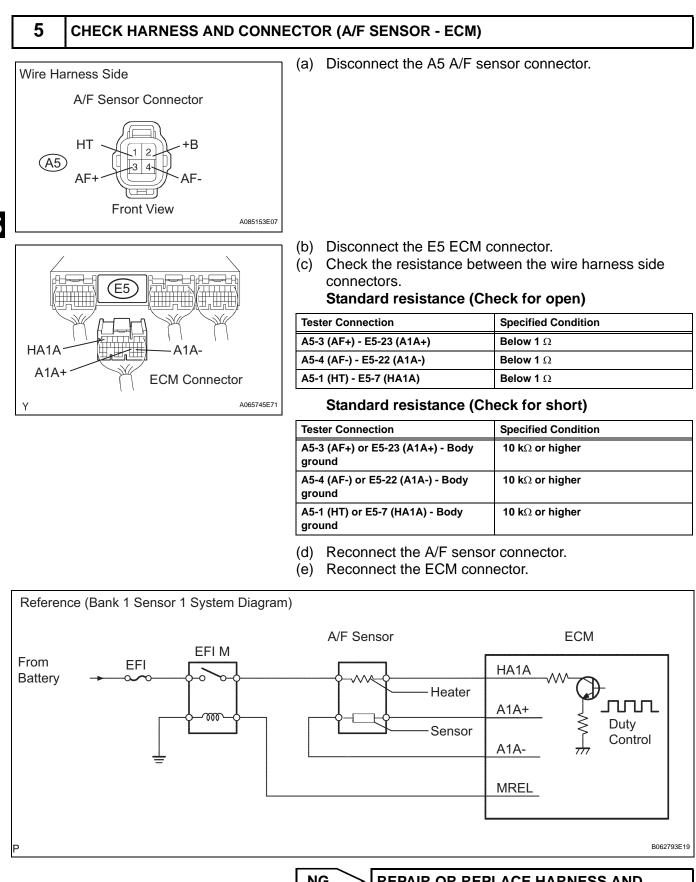
#### HINT:

- Whenever the output voltage of the A/F sensor remains at approximately 3.3 V (see diagram Malfunction Condition) under any condition as well as the above conditions, the A/ F sensor may have an open-circuit. (This will happen also when the A/F sensor heater has an open-circuit.)
- Whenever the output voltage of the A/F sensor remains at a certain value of approximately 3.8 V or more, or 2.8 V or less (see diagram Malfunction Condition) under any condition as well as the above conditions, the A/F sensor may have a short-circuit.
- The ECM will stop fuel injection (fuel cut) during engine deceleration. This will cause a LEAN condition and should result in a momentary increase in A/F sensor voltage output.
- The ECM must establish a closed throttle position learned value to perform fuel cut. If the battery terminal was reconnected, the vehicle must be driven over 10 mph to allow the ECM to learn the closed throttle position.
- When the vehicle is driven: The output voltage of the A/F sensor may be below 2.8 V during fuel enrichment. For the vehicle, this translates to a sudden increase in speed with the accelerator pedal fully depressed when trying to overtake another vehicle. The A/ F sensor is functioning normally.
- The A/F sensor is a current output element, and therefore the current is converted into voltage inside the ECM. If measuring voltage at connectors of A/F sensor or ECM, you will observe a constant voltage.





- (a) Remove the integration relay from the engine room relay block.
- (b) Inspect the EFI M relay. Standard resistance


| Tester Connection | Specified Condition                                                    |
|-------------------|------------------------------------------------------------------------|
| 3K-1 - 3I-8       | 10 k $\Omega$ or higher                                                |
| 3K-1 - 3I-8       | Below 1 $\Omega$<br>(Apply battery voltage to terminals 3I-6 and 3I-7) |

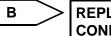
(c) Reinstall the integration relay.

NG

REPLACE INTEGRATION RELAY

ES




NG

REPAIR OR REPLACE HARNESS AND CONNECTOR

| ОК | $\supset$                  |                                                                                                                                                                                                                       |
|----|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | CHECK AIR INDUCTION SYSTE  | M                                                                                                                                                                                                                     |
|    |                            | <ul> <li>(a) Check for vacuum leaks in the air induction system.</li> <li>OK:<br/>No leakage in the air induction system.</li> <li>NG REPAIR OR REPLACE AIR INDUCTION<br/>SYSTEM</li> </ul>                           |
| ОК |                            |                                                                                                                                                                                                                       |
| 7  | CHECK FUEL PRESSURE        |                                                                                                                                                                                                                       |
|    |                            | OK:<br>Fuel pressure: 304 to 343 kPa (3.1 to 3.5 kgf/cm <sup>2</sup> , 44 to<br>50 psi)<br>NG REPAIR OR REPLACE FUEL SYSTEM                                                                                           |
| ОК | $\supset$                  | NG REPAIR OR REPLACE FUEL SYSTEM                                                                                                                                                                                      |
| 8  | INSPECT FUEL INJECTOR ASS  | EMBLY                                                                                                                                                                                                                 |
|    |                            | <ul> <li>(a) Check injector injection (high or low fuel injection quantity or poor injection pattern).</li> <li>OK:</li> <li>Injection volume: 36 to 46 cm<sup>3</sup> (2.1 to 2.8 cu in.) per 15 seconds.</li> </ul> |
|    |                            | NG REPLACE FUEL INJECTOR ASSEMBLY                                                                                                                                                                                     |
| ОК | $\supset$                  |                                                                                                                                                                                                                       |
| 9  | REPLACE AIR FUEL RATIO SEI | NSOR                                                                                                                                                                                                                  |
| GO |                            |                                                                                                                                                                                                                       |
| 10 | PERFORM CONFIRMATION DR    | IVING PATTERN                                                                                                                                                                                                         |
|    |                            | HINT:<br>Clear all DTCs prior to performing the confirmation driving<br>pattern.                                                                                                                                      |
| GO |                            |                                                                                                                                                                                                                       |
| 11 | READ OUTPUT DTCS (SEE IF A | /F SENSOR DTCS ARE OUTPUT AGAIN)                                                                                                                                                                                      |
|    |                            | <ul><li>(a) Connect the intelligent tester to the DLC3.</li><li>(b) Turn the power switch ON (IG).</li></ul>                                                                                                          |

- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs using the intelligent tester. **Result**

| Display (DTC Output)    | Proceed to |
|-------------------------|------------|
| No output               | A          |
| A/F sensor circuit DTCs | В          |



REPLACE ECM AND PERFORM CONFIRMATION DRIVING PATTERN



## OK:

Vehicle has run out of fuel in past.



CHECK FOR INTERMITTENT PROBLEMS

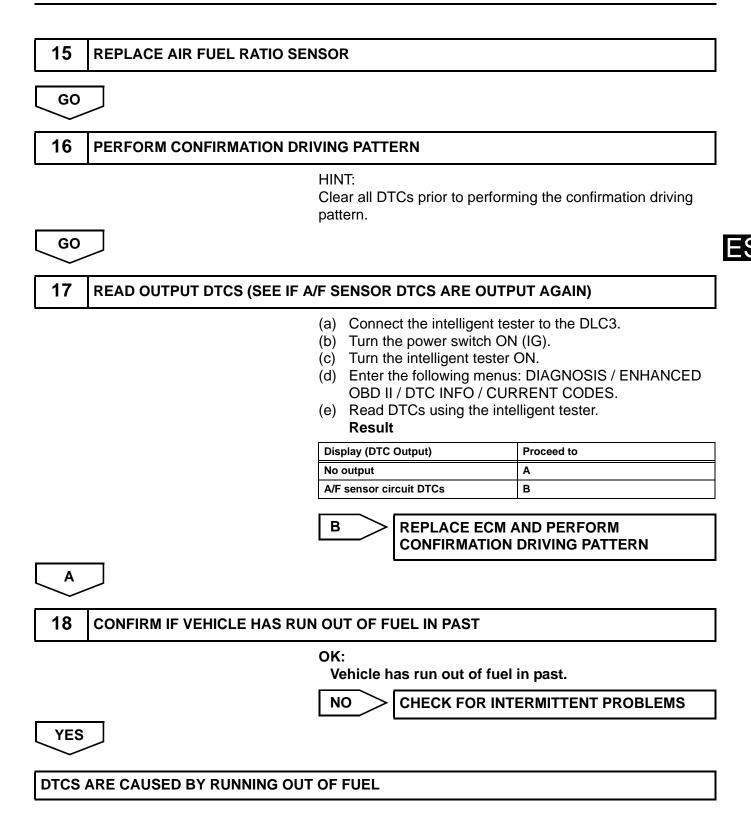
YES

Α

# DTCS ARE CAUSED BY RUNNING OUT OF FUEL

# **13 PERFORM CONFIRMATION DRIVING PATTERN**

HINT: Clear all DTCs prior to performing the confirmation driving pattern.


GO

**14** READ OUTPUT DTCS (SEE IF A/F SENSOR DTCS ARE OUTPUT AGAIN)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs using the intelligent tester. **Result**

| Display (DTC Output)    | Proceed to |
|-------------------------|------------|
| A/F sensor circuit DTCs | A          |
| No output               | В          |

Α



| _  |     |       |                                                                        |
|----|-----|-------|------------------------------------------------------------------------|
|    | DTC | P2238 | Oxygen (A/F) Sensor Pumping Current Circuit<br>Low (Bank 1 Sensor 1)   |
|    | DTC | P2239 | Oxygen (A/F) Sensor Pumping Current Circuit<br>High (Bank 1 Sensor 1)  |
|    | DTC | P2252 | Oxygen (A/F) Sensor Reference Ground Circuit<br>Low (Bank 1 Sensor 1)  |
| ES | DTC | P2253 | Oxygen (A/F) Sensor Reference Ground Circuit<br>High (Bank 1 Sensor 1) |

# DESCRIPTION

Refer to DTC P2195 (see page ES-344).

| DTC No. | DTC Detection Condition                                                                                            | Trouble Area                                                                                                                                                                          |
|---------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P2238   | <ul> <li>AF+ is 0.5 V or less for 5 seconds or more</li> <li>A/F sensor admittance: Less than 0.022 1/Ω</li> </ul> | <ul> <li>Open or short in A/F sensor circuit</li> <li>A/F sensor</li> <li>A/F sensor heater</li> <li>EFI M relay</li> <li>A/F sensor heater and relay circuit</li> <li>ECM</li> </ul> |
| P2239   | AF+ is more than 4.5 V for 5 seconds or more                                                                       | <ul> <li>Open or short in A/F sensor circuit</li> <li>A/F sensor</li> <li>A/F sensor heater</li> <li>EFI M relay</li> <li>A/F sensor heater and relay circuit</li> <li>ECM</li> </ul> |
| P2252   | AF- is 0.5 V or less for 5 seconds or more                                                                         | <ul> <li>Open or short in A/F sensor circuit</li> <li>A/F sensor</li> <li>A/F sensor heater</li> <li>EFI M relay</li> <li>A/F sensor heater and relay circuit</li> <li>ECM</li> </ul> |
| P2253   | AF- is more than 4.5 V for 5 seconds or more                                                                       | <ul> <li>Open or short in A/F sensor circuit</li> <li>A/F sensor</li> <li>A/F sensor heater</li> <li>EFI M relay</li> <li>A/F sensor heater and relay circuit</li> <li>ECM</li> </ul> |

# MONITOR DESCRIPTION

The air fuel ratio (A/F) sensor has a characteristic that it varies its voltage output in proportion to the airfuel ratio. If impedance (alternating current resistance) or voltage output of the sensor extraordinarily deviates from the standard range, the ECM determines to detect an open or short malfunction in the A/F sensor circuit.

# **MONITOR STRATEGY**

| Related DTCs | P2238: A/F sensor pumping current circuit low   |
|--------------|-------------------------------------------------|
|              | P2239: A/F sensor pumping current circuit high  |
|              | P2252: A/F sensor reference ground circuit low  |
|              | P2253: A/F sensor reference ground circuit high |

| Required sensors/components (main) | Main:<br>A/F sensor<br>Related:<br>Engine speed sensor, vehicle speed sensor, engine coolant<br>temperature sensor |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Frequency of operation             | Continuous                                                                                                         |
| Duration                           | 10 seconds                                                                                                         |
| MIL operation                      | 2 driving cycles                                                                                                   |
| Sequence of operation              | None                                                                                                               |

# **TYPICAL ENABLING CONDITIONS**

## "General precondition" is defined as follows:

| Battery voltage                        | 10.5 V or more    | Г |
|----------------------------------------|-------------------|---|
| Power switch                           | ON                | Ľ |
| Time after power switch from OFF to ON | 5 seconds or more |   |

## "A/F sensor admittance precondition" is defined as follows:

| Engine coolant temperature    | Closed - loop fuel control or more |
|-------------------------------|------------------------------------|
| Engine                        | Running                            |
| Time after A/F sensor heating | 20 seconds or more                 |

## P2238: A/F sensor pumping current circuit low

| (AF+, AF- ope |
|---------------|
|---------------|

| The monitor will run whenever the following DTCs are not present | None               |
|------------------------------------------------------------------|--------------------|
| Time while A/F sensor admittance precondition is met             | 10 seconds or more |

## P2238: A/F sensor pumping current circuit low

## (AF+, AF- short)

| General precondition Met |
|--------------------------|
|--------------------------|

### P2238: A/F sensor pumping current circuit low

| (AF+.                                 | GND  | short) |
|---------------------------------------|------|--------|
| ··· · · · · · · · · · · · · · · · · · | 0.10 | 0      |

| General precondition | Met |
|----------------------|-----|
|                      | hot |

## P2239: A/F sensor pumping current circuit high

| General precondition | Met |
|----------------------|-----|
|                      |     |

## P2252: A/F sensor reference ground circuit low

| General precondition                            | Met |
|-------------------------------------------------|-----|
| P2253: A/F sensor reference ground circuit high |     |

| <br>                 |     |
|----------------------|-----|
| General precondition | Met |
|                      |     |

# **TYPICAL MALFUNCTION THRESHOLDS**

# P2238: A/F sensor pumping current circuit low

(AF+, AF- open)

| A/F sensor admittance Less than 0.022 1/ $\Omega$ |
|---------------------------------------------------|
|---------------------------------------------------|

# P2238: A/F sensor pumping current circuit low

(AF+, AF- short)

.

| A/F sensor admittance | 0.1 V or less |
|-----------------------|---------------|
|                       |               |

# **P2238:** A/F sensor pumping current circuit low (AF+, GND short)

Difference between voltage of terminals AF+ and AF-

# P2239: A/F sensor pumping current circuit high

(AF+, +B, VCC short)

| AF+ terminal voltage (AF+ and +B, or AF+ and VCC short) | More than 4.5 V |
|---------------------------------------------------------|-----------------|
|---------------------------------------------------------|-----------------|

## P2252: A/F sensor reference ground circuit low

| AF- terminal voltage (AF- and GND short) | 0.5 V or less |
|------------------------------------------|---------------|
|------------------------------------------|---------------|

## P2253: A/F sensor reference ground circuit high

| AF- terminal voltage (AF- and +B, or AF- and VCC short) More than 4.5 V | 0                                                       |                 |
|-------------------------------------------------------------------------|---------------------------------------------------------|-----------------|
|                                                                         | AF- terminal voltage (AF- and +B, or AF- and VCC short) | More than 4.5 V |

# WIRING DIAGRAM

Refer to DTC P2195 (see page ES-347).

# <u>ES</u>

# INSPECTION PROCEDURE

HINT:

- Although the each DTC title says "oxygen sensor", these DTCs are related to the A/F sensor.
- Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform the ACTIVE TEST A/F CONTROL operation.

HINT:

The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%. (1) Connect the intelligent tester to the DLC3.

(2) Turn the power switch ON (IG).

(3) Put the engine in inspection mode (see page ES-1).

(4) Warm up the engine by running the engine at 2,500 rpm, depressing the accelerator pedal more than 60% for approximately 90 seconds.

(5) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.

(6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

Result:

A/F sensor reacts in accordance with increase and decrease of injection volume:

+25%  $\rightarrow$  rich output: Less than 3.0 V

-12.5%  $\rightarrow$  lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume:

+25%  $\rightarrow$  rich output: More than 0.55 V

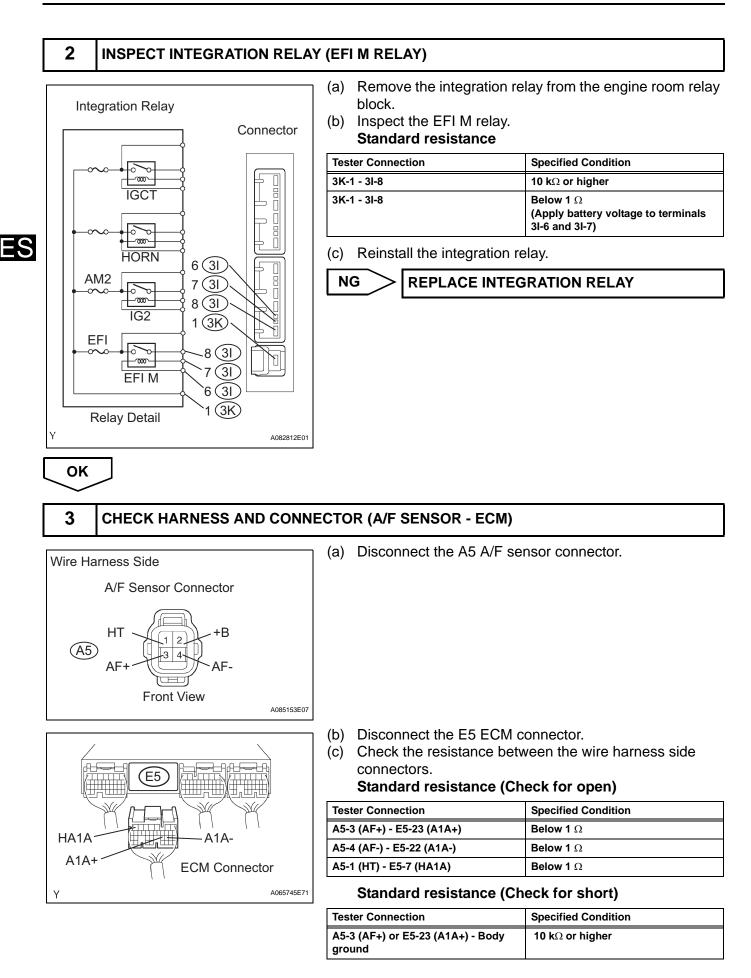
-12.5%  $\rightarrow$  lean output: Less than 0.4 V

# NOTICE:

The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.

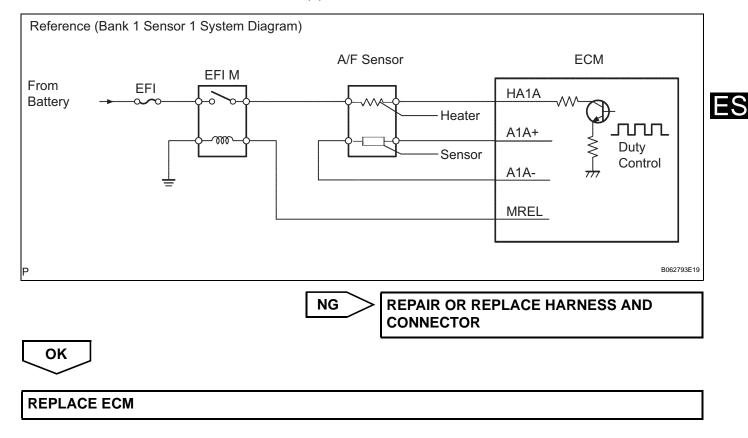
| Case | A/F Sensor (Ser                                       | nsor 1) Output Voltage | HO2 Sensor (Se                                        | nsor 2) Output Voltage | Main Suspected<br>Trouble Area |
|------|-------------------------------------------------------|------------------------|-------------------------------------------------------|------------------------|--------------------------------|
| 1    | Injection Volume<br>+25%<br>-12.5%                    | ♠                      | Injection Volume<br>+25%<br>-12.5%                    | ♠                      |                                |
|      | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V | Ск                     | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | ок                     | -                              |

| Case                                          | A/F Sensor (Se                                        | nsor 1) Output Voltage                                | HO2 Sensor (Se                          | nsor 2) Output Voltage |   | Main Suspected<br>Trouble Area                                |
|-----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|------------------------|---|---------------------------------------------------------------|
| 2                                             | Injection Volume<br>+25%<br>-12.5%                    | ♠F1                                                   | Injection Volume<br>+25%<br>-12.5%      | ♠[[                    |   | A/F sensor                                                    |
| Output<br>Voltage<br>Almost<br>no<br>reaction | NG                                                    | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | ок                                      |                        | • | A/F sensor heater<br>A/F sensor circuit                       |
| 3                                             | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                                                   | Injection Volume<br>+25%<br>-12.5%      | ♠[[]                   | • | HO2 sensor<br>HO2 sensor heater                               |
| 3                                             | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V |                                                       | Output Voltage<br>Almost<br>no reaction | NG                     | • | HO2 sensor circuit                                            |
| 4                                             | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                                                   | Injection Volume<br>+25%<br>-12.5%      | ♠[]                    | • | Fuel Injector<br>Fuel pressure<br>Gas leakage from            |
| 4                                             | Output Voltage<br>Almost<br>no reaction               | NG                                                    | Output Voltage<br>Almost<br>no reaction | NG                     |   | exhaust system (Air-<br>fuel ratio extremely<br>or lean rich) |


The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

To display the graph, enter ACTIVE TEST/ A/F CONTROL/USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button. HINT:

- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- A high A/F sensor voltage could be caused by a RICH air-fuel mixture. Check the conditions that would cause the engine to run with the RICH air-fuel mixture.
- A low A/F sensor voltage could be caused by a LEAN air-fuel mixture. Check the conditions that would cause the engine to run with the LEAN air-fuel mixture.


#### 1 **INSPECT AIR FUEL RATIO SENSOR (RESISTANCE OF A/F SENSOR HEATER)** Disconnect the A5 A/F sensor connector. (a) Component Side Measure the resistance between the terminals of the A/F (b) sensor. A/F Sensor Connector Standard resistance HΤ J +B Tester Connection Resistance 2 1 1 (HT) - 2 (+B) 1.8 to 3.4 Ω at 20°C (68°F) (A5)3 (c) Reconnect the A/F sensor connector. AF-Front View NG **REPLACE AIR FUEL RATIO SENSOR** A085152E51

OK



| Tester Connection                           | Specified Condition     |
|---------------------------------------------|-------------------------|
| A5-4 (AF-) or E5-22 (A1A-) - Body<br>ground | 10 k $\Omega$ or higher |
| A5-1 (HT) or E5-7 (HA1A) - Body<br>ground   | 10 k $\Omega$ or higher |

- (d) Reconnect the A/F sensor connector.
- (e) Reconnect the ECM connector.



| DTC P2420 Evaporative Emission Pressure Switching<br>Valve Stuck OFF |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

# DTC SUMMARY

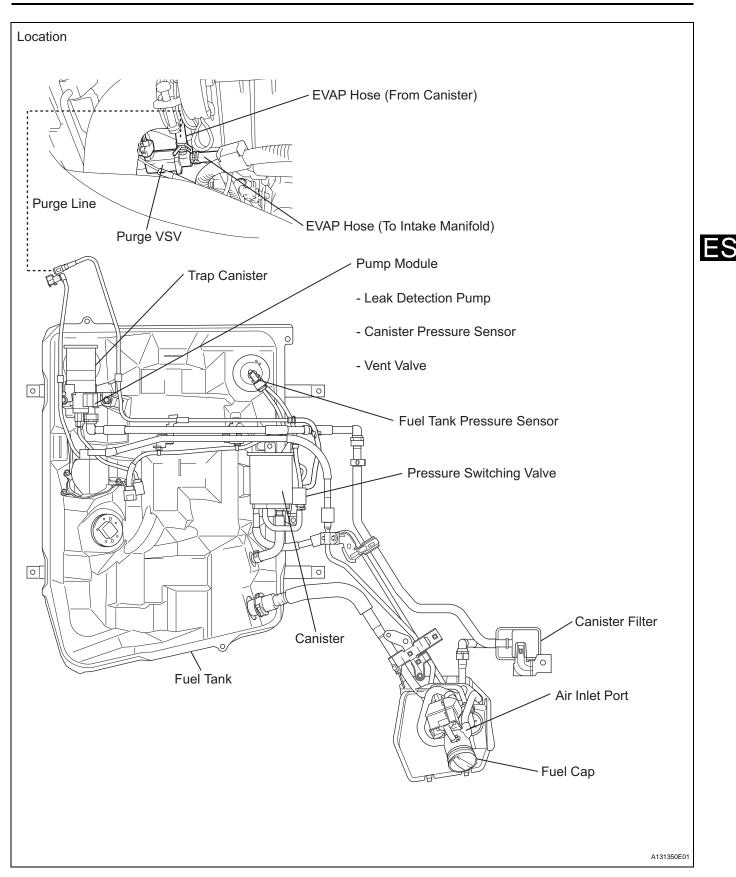
| DTC | No. | Monitoring Items                | Malfunction<br>Detection<br>Conditions                                                                                                                                                                         |   | Trouble Areas                                                                                                                                                | Detection Timing | Detection Logic |
|-----|-----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| P24 | 20  | Vent valve stuck<br>open (vent) | <ul> <li>The following<br/>condition is met<br/>during key-off EVAP<br/>monitor:</li> <li>EVAP pressure<br/>change when<br/>vent valve is<br/>closed (ON) less<br/>than 0.3 kPa-g<br/>(2.25 mmHg-g)</li> </ul> | • | Canister pump<br>module<br>(reference orifice,<br>leak detection<br>pump, vent valve)<br>Connector/wire<br>harness (canister<br>pump module -<br>ECM)<br>ECM | Power switch OFF | 2 trip          |

# DESCRIPTION

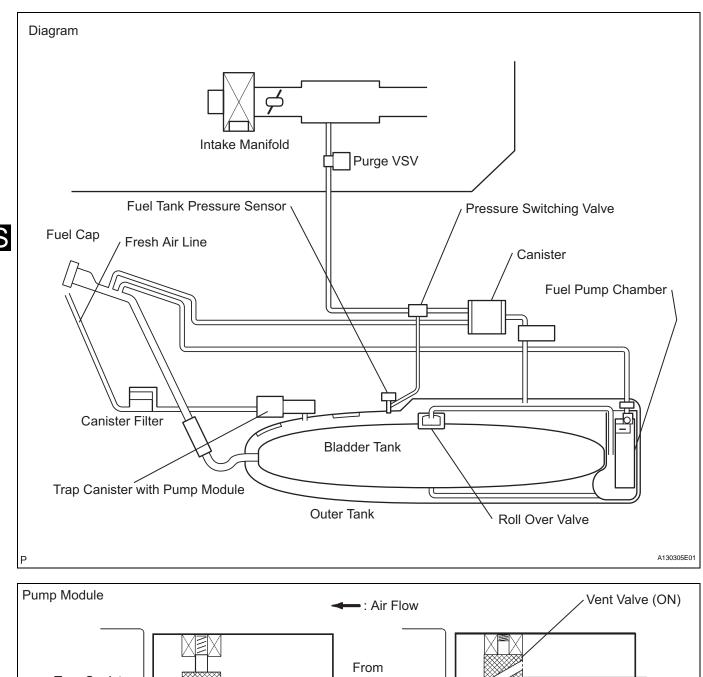
# NOTICE:

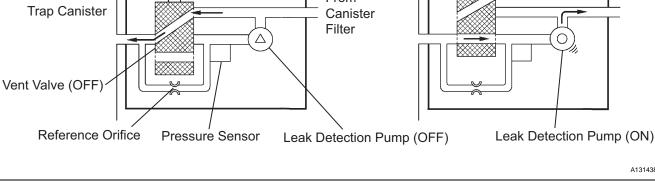
In this vehicle's EVAP system, turning ON the vent valve does not seal off the EVAP system. To check for leaks in the EVAP system, disconnect the air inlet vent hose and apply pressure from the atmosphere side of the canister.

While the engine is running, if a predetermined condition (closed loop, etc.) is met, the purge VSV is opened by the ECM and stored fuel vapors in the canister are purged to the intake manifold. The ECM changes the duty cycle ratio of the purge VSV to control purge flow volume.


The purge flow volume is also determined by the intake manifold pressure. Atmospheric pressure is allowed into the canister through the vent valve to ensure that the purge flow is maintained when the negative pressure (vacuum) is applied to the canister.

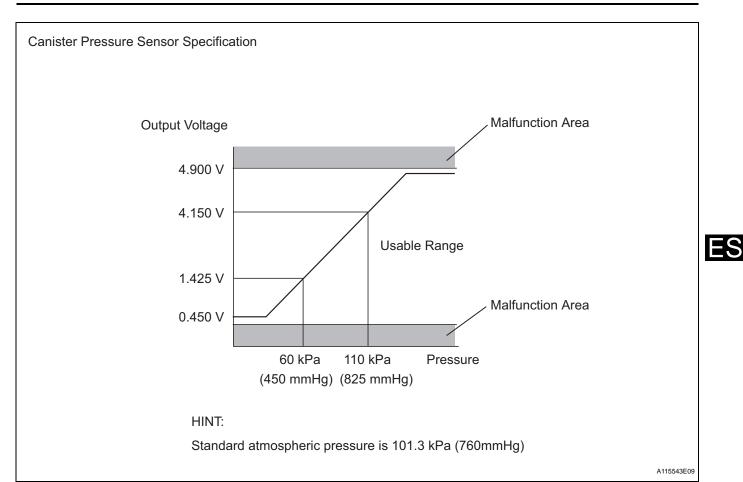
# Key-off monitor


This monitor checks for Evaporative Emission (EVAP) system leaks and canister pump module malfunctions. The monitor starts 5 hours\* after the power switch is turned OFF. More than 5 hours are required to allow the fuel to cool down to stabilize the Fuel Tank Pressure (FTP), thus making the EVAP system monitor more accurate.


The leak detection pump creates negative pressure (vacuum) in the EVAP system and the pressure is measured. Finally, the ECM monitors for leaks from the EVAP system and malfunctions in both the canister pump module and purge VSV, based on the EVAP pressure. HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.




## ES-372





A131438E01

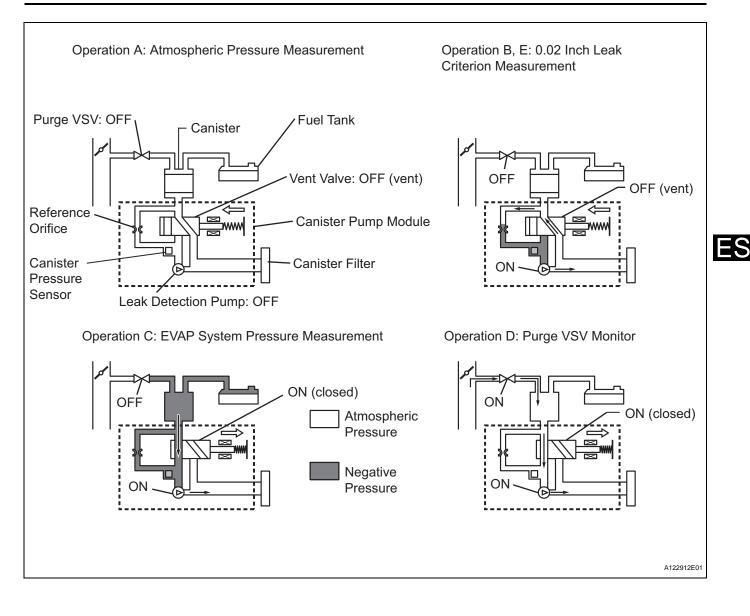
ES



| Components                         | Operations                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canister, Trap canister            | Contains activated charcoal to absorb EVAP generated in fuel tank.                                                                                                                                                                                                                                                                                |
| Cut-off valve                      | Located in fuel tank. Valve floats and closes when fuel tank 100% full.                                                                                                                                                                                                                                                                           |
| Purge Vacuum Switching Valve (VSV) | Opens or closes line between canister and intake manifold. ECM uses<br>purge VSV to control EVAP purge flow. In order to discharge EVAP<br>absorbed by canister to intake manifold, ECM opens purge VSV.<br>EVAP discharge volume to intake manifold controlled by purge VSV<br>duty cycle ratio (current-carrying time) (open: ON; closed: OFF). |
| Roll-over valve                    | Located in fuel tank. Valve closes by its own weight when vehicle overturns to prevent fuel from spilling out.                                                                                                                                                                                                                                    |
| Soak timer                         | Built into ECM. To ensure accurate EVAP monitor, measures 5 hours (+-15 min) after power switch OFF. This allows fuel to cool down, stabilizing Fuel Tank Pressure (FTP). When approximately 5 hours elapsed, ECM activates.                                                                                                                      |
| Pressure switching valve           | The pressure switching valve located on the canister is used to detect<br>leakage from the bladder tank into the fuel tank. The valve opens<br>during the bladder tank leak check. Then, the fuel tank's fuel vapor<br>flows to the intake manifold without passing the canister.                                                                 |
| Pump module                        | Consists of (a) to (d) below. Pump module cannot be disassembled.                                                                                                                                                                                                                                                                                 |
| (a) Vent valve                     | Vents and closes EVAP system. When ECM turns valve ON, EVAP<br>system closed. When ECM turns valve OFF, EVAP system vented.<br>Negative pressure (vacuum) created in EVAP system to check for<br>EVAP leaks by closing purge VSV, turning vent valve ON (closed) and<br>operating leak detection pump (refer to fig. 1).                          |
| (b) Canister pressure sensor       | Indicates pressure as voltage. ECM supplies regulated 5 V to canister pressure sensor, and uses feedback from sensor to monitor EVAP system pressure (refer to fig. 2).                                                                                                                                                                           |
| (c) Leak detection pump            | Creates negative pressure (vacuum) in EVAP system for leak check.                                                                                                                                                                                                                                                                                 |

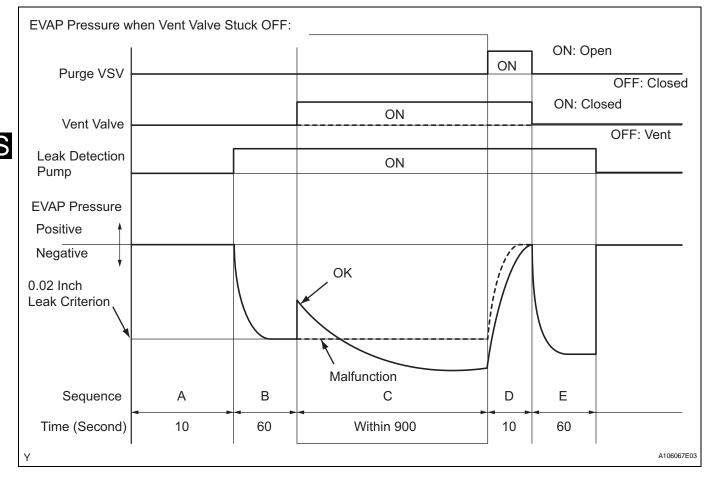
| Components            | Operations                                                                                                                                                                                                                                      |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) Reference orifice | Has opening with 0.02 inch diameter. Vacuum produced through orifice by closing purge VSV, turning vent valve OFF and operating leak detection pump to monitor 0.02 inch leak criterion. 0.02 inch leak criterion indicates small leak of EVAP. |

# MONITOR DESCRIPTION


5 hours\* after the power switch is turned OFF, the leak detection pump creates negative pressure (vacuum) in the EVAP system. The ECM monitors for leaks and actuator malfunctions based on the EVAP pressure.

HINT:

\*: If the engine coolant temperature is not below 35°C (95°F) 5 hours after the power switch is turned OFF, the monitor check starts 2 hours later. If it is still not below 35°C (95°F) 7 hours after the power switch is turned OFF, the monitor check starts 2.5 hours later.


| Sequence | Operations                                  | Descriptions                                                                                                                                                                                                                                                                                                                        | Duration     |
|----------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| -        | ECM activation                              | Activated by soak timer 5, 7 or 9.5 hours after power switch OFF.                                                                                                                                                                                                                                                                   | -            |
| A        | Atmospheric pressure<br>measurement         | Vent valve turned OFF (vent) and<br>EVAP system pressure measured<br>by ECM in order to register<br>atmospheric pressure.<br>If pressure in EVAP system not<br>between 70 kPa and 110 kPa<br>(525 mmHg and 825 mmHg),<br>ECM cancels EVAP system<br>monitor.                                                                        | 10 seconds   |
| В        | First 0.02 inch leak criterion measurement  | In order to determine 0.02 inch<br>leak criterion, leak detection<br>pump creates negative pressure<br>(vacuum) through reference<br>orifice and then ECM checks if<br>leak detection pump and vent<br>valve operate normally.                                                                                                      | 60 seconds   |
| С        | EVAP system pressure measurement            | Vent valve turned ON (closed) to<br>shut EVAP system.<br>Negative pressure (vacuum)<br>created in EVAP system, and<br>EVAP system pressure then<br>measured.<br>Write down measured value as it<br>will be used in leak check.<br>If EVAP pressure does not<br>stabilize within 900 seconds,<br>ECM cancels EVAP system<br>monitor. | 900 seconds* |
| D        | Purge VSV monitor                           | Purge VSV opened and then<br>EVAP system pressure measured<br>by ECM.<br>Large increase indicates normal.                                                                                                                                                                                                                           | 10 seconds   |
| E        | Second 0.02 inch leak criterion measurement | After second 0.02 inch leak<br>criterion measurement, leak<br>check performed by comparing<br>first and second 0.02 inch leak<br>criterion.<br>If stabilized system pressure<br>higher than second 0.02 inch leak<br>criterion, ECM determines that<br>EVAP system leaking.                                                         | 60 seconds   |
| -        | Final check                                 | Atmospheric pressure measured<br>and then monitoring result<br>recorded by ECM.                                                                                                                                                                                                                                                     | -            |

\*: If only a small amount of fuel is in the fuel tank, it takes longer for the EVAP pressure to stabilize.



1. P2420: Vent valve stuck open (vent)

In operation C, the vent valve turns ON (closes) and the EVAP system pressure is then measured by the ECM using the canister pressure sensor to conduct an EVAP leak check. If pressure does not drop when the vent valve is open, the ECM interprets this as the vent valve being stuck open. The ECM illuminates the MIL and sets the DTC.



# **MONITOR STRATEGY**

| Required Sensors/Components | Purge VSV and canister pump module |
|-----------------------------|------------------------------------|
| Frequency of Operation      | Once per driving cycle             |
| Duration                    | Maximum 15 seconds                 |
| MIL Operation               | 2 driving cycles                   |
| Sequence of Operation       | None                               |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever these DTCs are not present | P0011, P0012, P0021, P0022 (VVT system-Advance, Retard)         P0100, P0101, P0102, P0103 (MAF sensor)         P0110, P0112, P0113 (IAT sensor)         P0115, P0116, P0117, P0118 (ECT sensor)         P0120, P0122, P0123, P0220, P0222, P0223, P2135,(TP sensor)         P0125 (Insufficient ECT for closed loop)         P0171, P0172, P0174, P0175 (Fuel system)         P0300, P0301, P0302, P0303, P0304 (Misfire)         P0340, P0341 (CMP sensor)         P0351, P0352, P0353, P0354 (Igniter)         P0450, P0452, P0453 (EVAP press sensor)         P0500 (VSS) |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atmospheric pressure                                     | 70 to 110 kPa (525 to 825 mmHg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Battery voltage                                                 | 10.5 V or higher           |
|-----------------------------------------------------------------|----------------------------|
| Dallery vollage                                                 |                            |
| Vehicle speed                                                   | Less than 4 km/h (2.5 mph) |
| Power switch                                                    | OFF                        |
| Time after key off                                              | 5, 7 or 9.5 hours          |
| Purge VSV                                                       | Not operated by scan tool  |
| Vent valve                                                      | Not operated by scan tool  |
| Leak detection pump                                             | Not operated by scan tool  |
| Both of the following conditions 1 and 2 are met before key off | -                          |
| 1. Duration that vehicle has been driven                        | 5 minutes or more          |
| 2. EVAP purge operation                                         | Performed                  |
| ECT                                                             | 4.4 to 35°C (40 to 95°F)   |
| IAT                                                             | 4.4 to 35°C (40 to 95°F)   |

# 1. Key-off monitor sequence 1 to 8

## 1. Atmospheric pressure measurement

| Next sequence is run if the following condition is met | -                                      |
|--------------------------------------------------------|----------------------------------------|
| Atmospheric pressure change                            | Within 0.3 kPa (2.25 mmHg) in 1 second |

### 2. First reference pressure measurement

| Next sequence is run if the following conditions are met      | -                                    |
|---------------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement start | 1 kPa ( 7.5 mmHg) or lower           |
| Reference pressure                                            | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                            | Saturated within 60 seconds          |

# 3. Vent valve stuck closed check

|   | Next sequence is run if the following condition is met | -                           |
|---|--------------------------------------------------------|-----------------------------|
| F | EVAP pressure change after vent valve is ON            | 0.3 kPa (2.25 mmHg) or more |

## 4. Vacuum introduction

| Next sequence is run if the following condition is met | -                            |
|--------------------------------------------------------|------------------------------|
| EVAP pressure                                          | Saturated within 900 seconds |

## 5. Purge VSV stuck closed check

| Next sequence is run if the following condition is met | -                           |  |
|--------------------------------------------------------|-----------------------------|--|
| EVAP pressure change after purge valve is open         | 0.3 kPa (2.25 mmHg) or more |  |

## 6. Second reference pressure measurement

| Next sequence is run if the following conditions are met | -                                    |
|----------------------------------------------------------|--------------------------------------|
| EVAP pressure just after reference pressure measurement  | 1 kPa (7.5 mmHg) or lower            |
| Reference pressure                                       | -4.85 to -1.05 kPa (726 to 754 mmHg) |
| Reference pressure                                       | Saturated within 60 seconds          |
| Reference pressure difference between first and second   | Less than 0.7 kPa (5.25 mmHg)        |

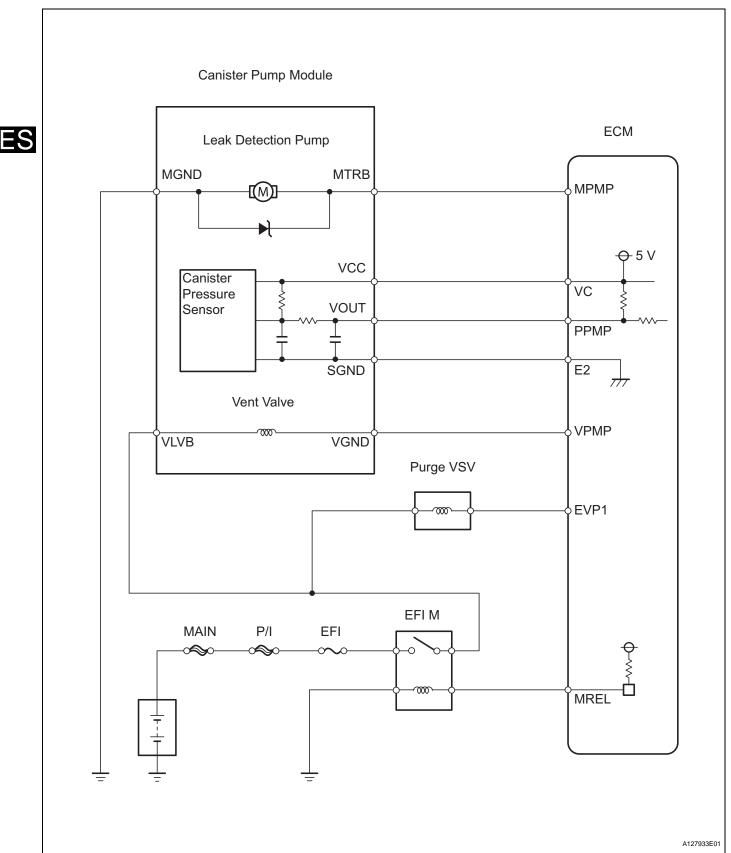
## 7. Leak check

| Next sequence is run if the following condition is met | -                                    |
|--------------------------------------------------------|--------------------------------------|
| EVAP pressure when vacuum introduction is complete     | Lower than second reference pressure |

## 8. Atmospheric pressure measurement

| EVAP monitor is complete if the following condition is met | -                          |
|------------------------------------------------------------|----------------------------|
| Atmospheric pressure difference between sequence 1 and 8   | Within 0.3 kPa (2.25 mmHg) |

# **TYPICAL MALFUNCTION THRESHOLDS**


1. P2420: Vent valve stuck open (vent)

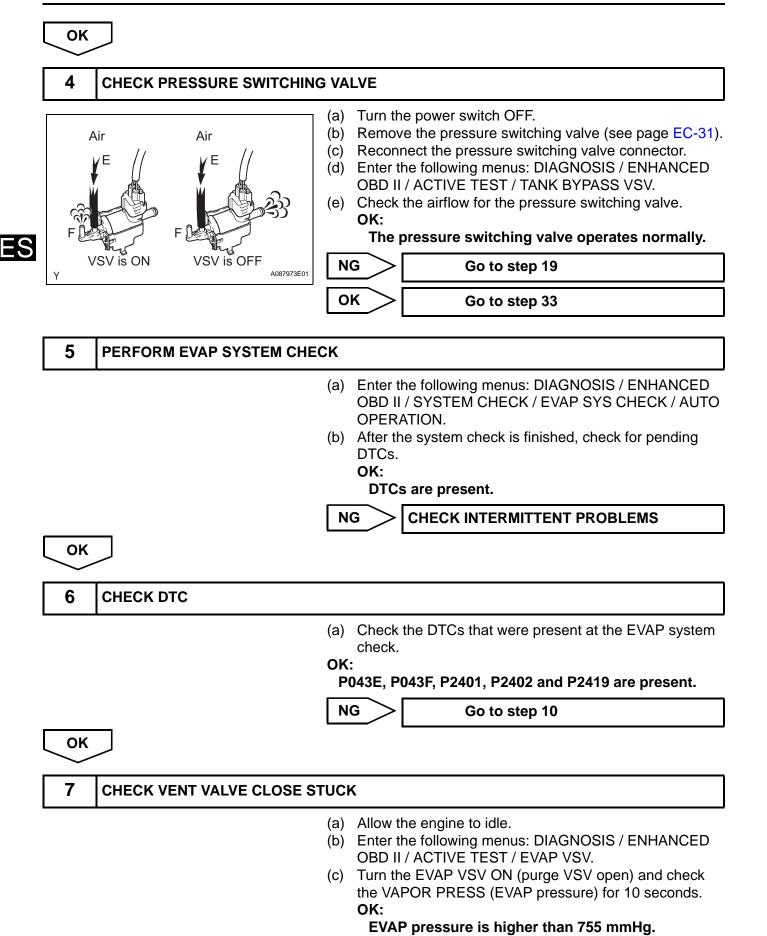
| EVAP pressure change after EVAP canister vent valve is ON | Less than 0.3 kPa (2.25 mmHg) |
|-----------------------------------------------------------|-------------------------------|
|-----------------------------------------------------------|-------------------------------|

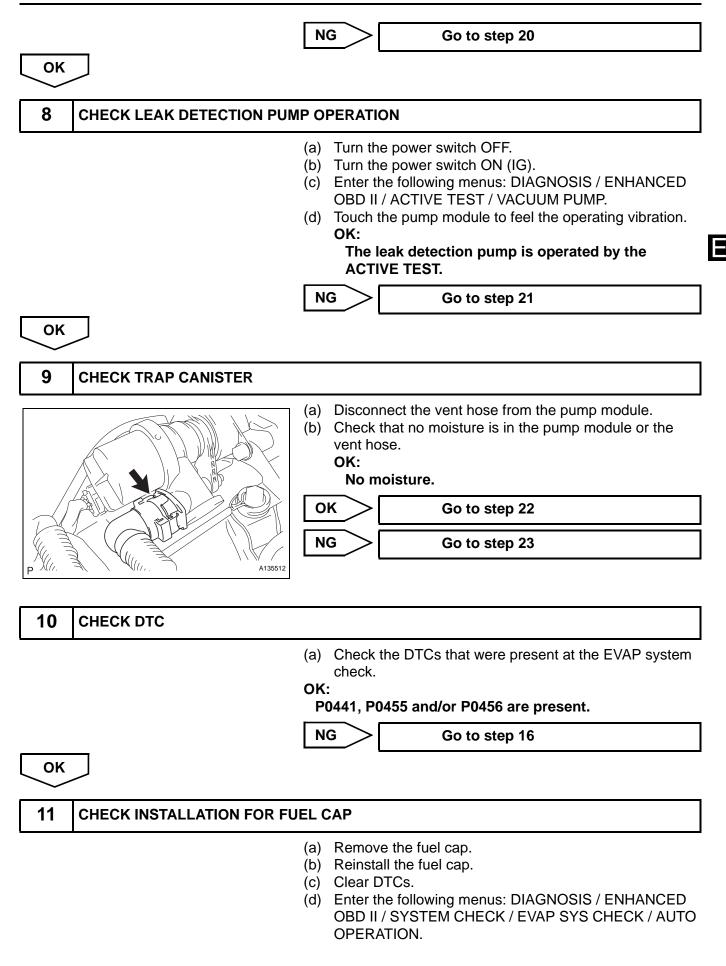
# **MONITOR RESULT**

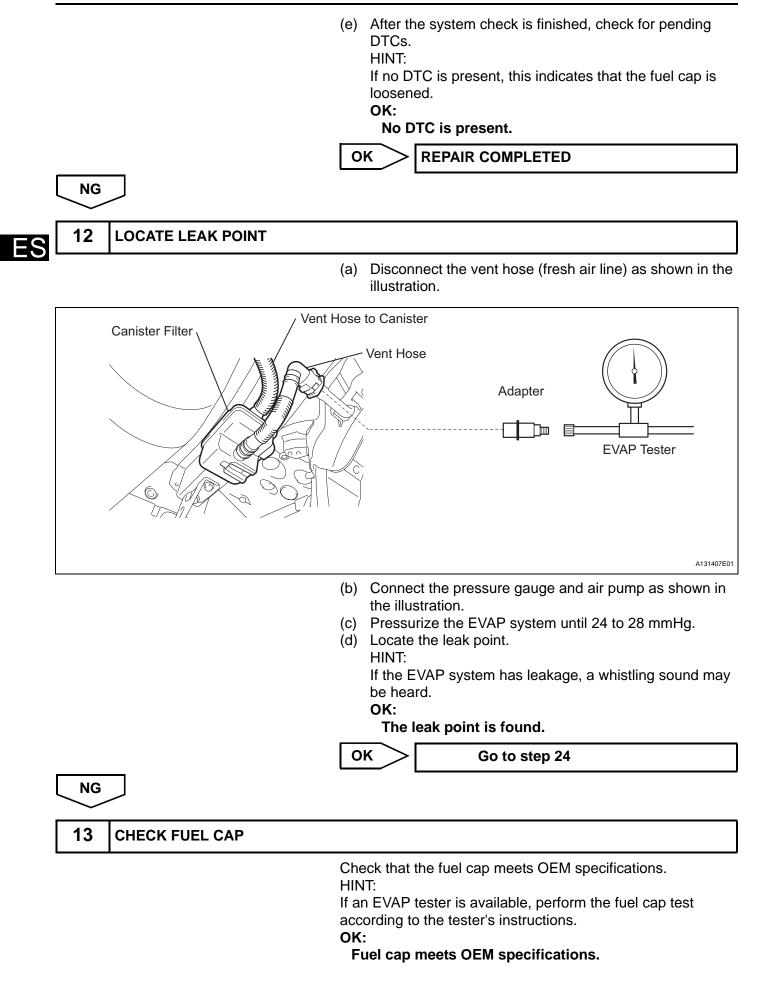
Refer to CHECKING MONITOR STATUS (see page ES-15).

# WIRING DIAGRAM

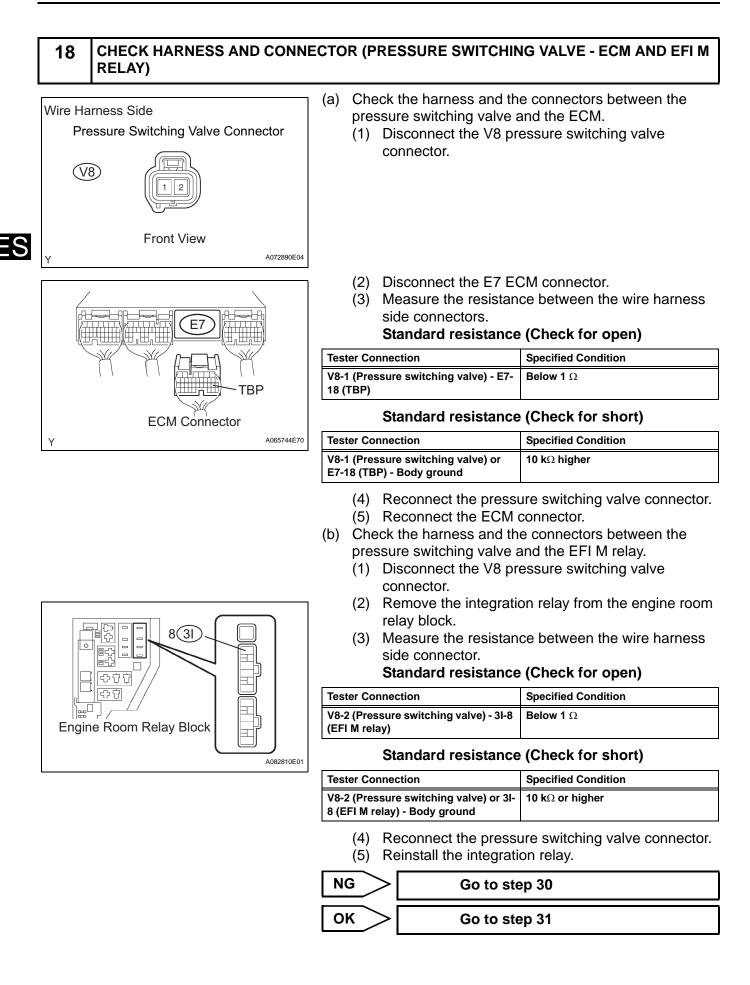


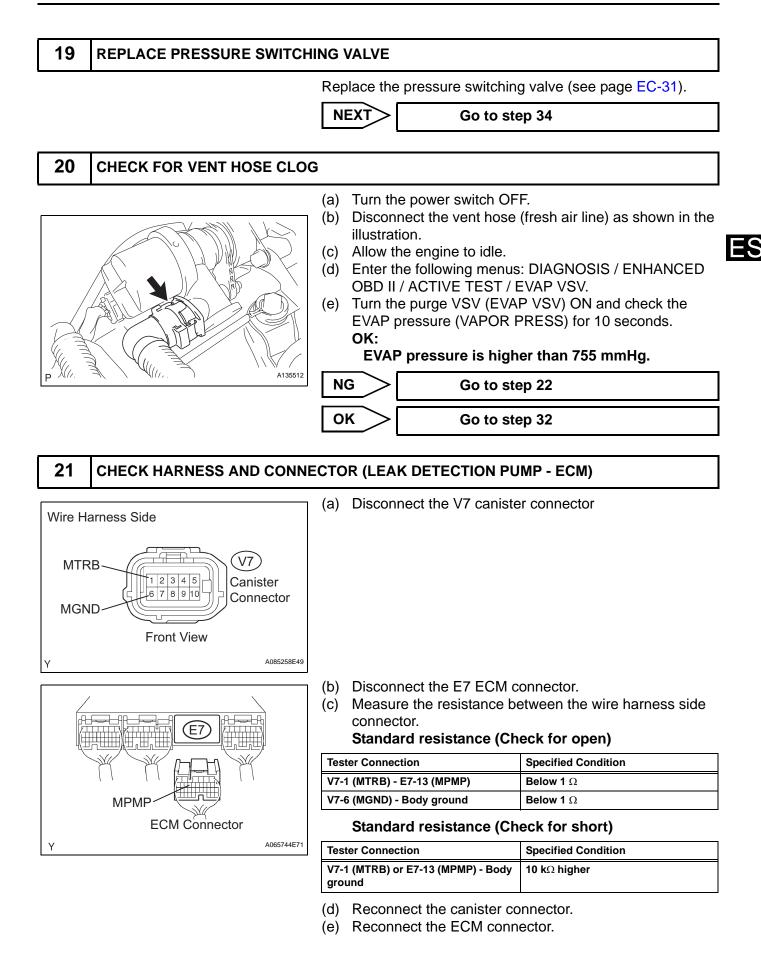

# **INSPECTION PROCEDURE**


# NOTICE:

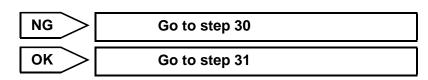

# The intelligent tester is required to conduct the following diagnostic troubleshooting procedure. HINT:

- Using the intelligent tester monitor results enable the EVAP system to be confirmed.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine conditions
  when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the
  vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or
  rich, and other data from the time the malfunction occurred.


| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                                                                                                                 |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | CONFIRM DTC                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                                                                                                                                                 |  |
|     | <ul> <li>(a) Turn the power switch OFF and wait for 10 seconds.</li> <li>(b) Turn the power switch ON (IG).</li> <li>(c) Turn the power switch OFF and wait for 10 seconds.</li> <li>(d) Connect the intelligent tester to the DLC3.</li> <li>(e) Turn the power switch ON (IG).</li> <li>(f) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.</li> <li>(g) Check if DTC P0446 is output.</li> </ul> |                                                                     |                                                                                                                                                                                 |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO                                                                  | Go to step 5                                                                                                                                                                    |  |
| YES |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                                                                                                                 |  |
| 2   | PERFORM EVAP SYSTEM CHEC                                                                                                                                                                                                                                                                                                                                                                                                               | <                                                                   |                                                                                                                                                                                 |  |
|     | <ul> <li>(a) Note the freeze frame data and DTCs.</li> <li>(b) Clear DTCs.</li> <li>(c) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO OPERATION.</li> <li>(d) After the system check is finished, check for pending DTCs.</li> <li>OK:</li> <li>No DTC is present.</li> </ul>                                                                                                          |                                                                     |                                                                                                                                                                                 |  |
|     | NG Go to step 6                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                                                                                                                 |  |
| ОК  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                                                                                                                                                 |  |
| 3   | <b>3</b> CHECK OPERATION FOR PRESSURE SWITCHING VALVE                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                                                                                                                                                                                 |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | OBD II / ACTI<br>b) Touch the pres<br>VSV) to feel th<br><b>OK:</b> | wing menus: DIAGNOSIS / ENHANCED<br>VE TEST / TANK BYPASS VSV.<br>ssure switching valve (TANK BYPASS<br>ne operating vibration.<br>re switching valve is operated by the<br>ST. |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | NG                                                                  | Go to step 18                                                                                                                                                                   |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>L</b>                                                            |                                                                                                                                                                                 |  |






|       |                                    | NG                                            | Go to step 25                                                                                                                                                                         |
|-------|------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОК    |                                    | •                                             |                                                                                                                                                                                       |
| 14    | CHECK OPERATION FOR PURC           | GE VSV                                        |                                                                                                                                                                                       |
|       |                                    | OBD II<br>(b) Touch t<br>OK:<br>The p<br>ACTI | he following menus: DIAGNOSIS / ENHANCED<br>/ ACTIVE TEST / EVAP VSV.<br>he purge VSV to feel the operating vibration.<br>ourge VSV (EVAP VSV) is operated by the<br>VE TEST.         |
| ОК    |                                    |                                               | Go to step 26                                                                                                                                                                         |
| 15    | CHECK INTAKE MANIFOLD PRI          | ESSURE                                        |                                                                                                                                                                                       |
| Purge | e VSV<br>Hose (to Intake Manifold) | (b) Allow th<br>(c) Check to<br><b>OK:</b>    | hect the purge VSV hose that is connected to the<br>body.<br>he engine to idle.<br>hat the hose has suction using your finger.<br>hose has suction.<br>Go to step 27<br>Go to step 28 |
| 16    | CHECK DTC                          |                                               |                                                                                                                                                                                       |
|       |                                    | check.<br>OK:                                 | he DTCs that were present at the EVAP system                                                                                                                                          |
|       |                                    | NG                                            | Go to step 9                                                                                                                                                                          |
| ОК    |                                    | -                                             |                                                                                                                                                                                       |
| 17    | CHECK OPERATION FOR VENT           | VALVE                                         |                                                                                                                                                                                       |
|       |                                    | OBD II<br>(b) Touch t<br>OK:<br>The v         | he following menus: DIAGNOSIS / ENHANCED<br>/ ACTIVE TEST / VENT VALVE.<br>he pump module to feel the operating vibration.<br>ent valve is operated by the ACTIVE TEST.               |
|       |                                    | ОК >[                                         | Go to step 9                                                                                                                                                                          |
|       |                                    | NG                                            | Go to step 29                                                                                                                                                                         |



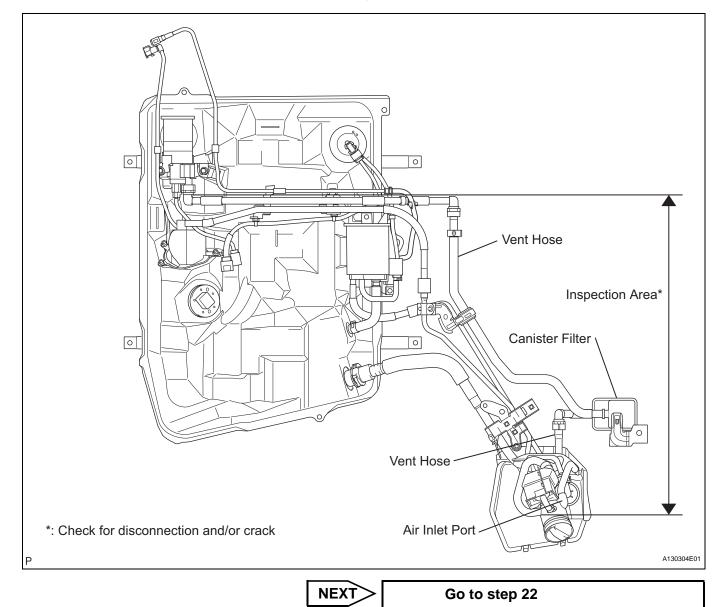


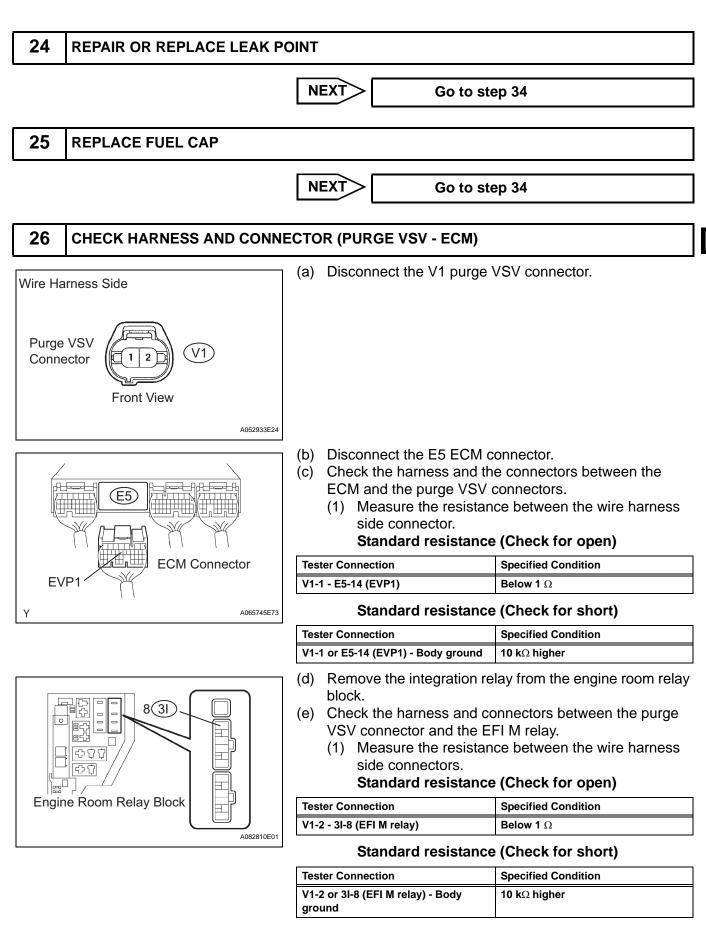
23





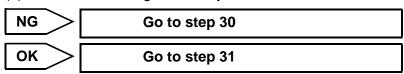
Replace the trap canister with pump module (see page EC-17).

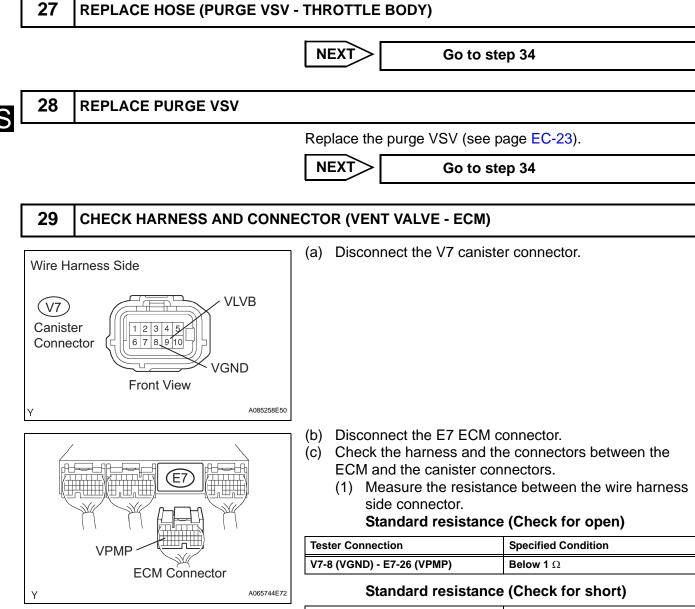




Go to step 34

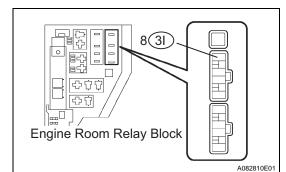
ES

# CHECK FOR VENT HOSE DAMAGE


Check for hose damage as shown in the illustration. If necessary, replace the vent hose.







- (f) Reconnect the purge VSV connector.
- (g) Reconnect the ECM connector.

(h) Reinstall the integration relay.





| Tester Connection                         | Specified Condition  |
|-------------------------------------------|----------------------|
| V7-8 (VGND) or E7-26 (VPMP) - Body ground | 10 k $\Omega$ higher |



- (d) Remove the integration relay from the engine room relay block.
- (e) Check the harness and connectors between the canister connector and the EFI M relay.
  - (1) Measure the resistance between the wire harness side connectors.

# Standard resistance (Check for open)

| Tester Connection                | Specified Condition |
|----------------------------------|---------------------|
| V7-9 (VLVB) - 3I-8 (EFI M relay) | Below 1 Ω           |

# Standard resistance (Check for short)

| Tester Connection                                  | Specified Condition  |
|----------------------------------------------------|----------------------|
| V7-9 (VLVB) or 3I-8 (EFI M relay) -<br>Body ground | 10 k $\Omega$ higher |

- Reconnect the canister connector. (f)
- (g) Reconnect the ECM connector.
- (h) Reinstall the integration relay.

| NG | Go to step 30 |  |
|----|---------------|--|
| ОК | Go to step 31 |  |

#### 30 **REPAIR OR REPLACE HARNESS AND CONNECTOR**

NEXT

Go to step 34

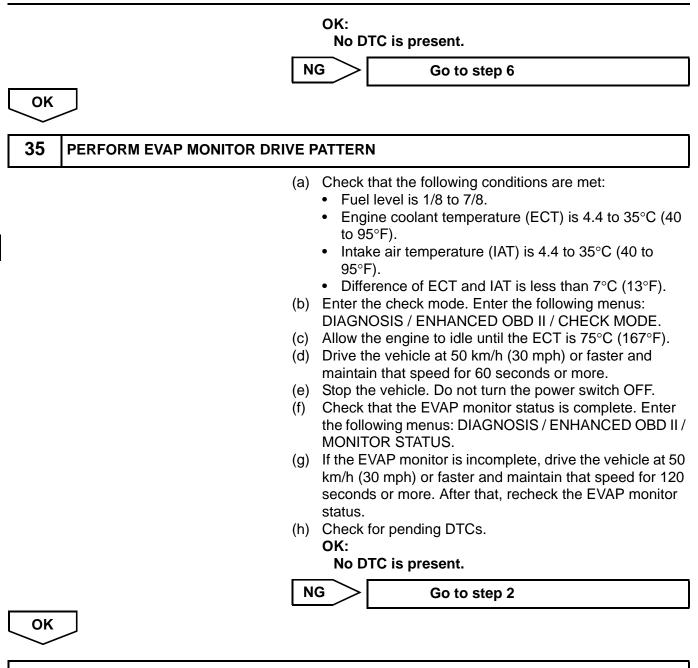
31 **REPLACE ECM** 

Replace the ECM (see page ES-469).

NEXT

Go to step 34

#### 32 CHECK AND REPLACE VENT HOSE OR CANISTER FILTER


NEXT

Go to step 34

#### 33 REPLACE HOSE (PRESSURE SWITCHING VALVE AND FUEL TANK)

| NEXT |                             |                                                                                                                                                  |  |
|------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 34   | 4 PERFORM EVAP SYSTEM CHECK |                                                                                                                                                  |  |
|      | (a)<br>(b)                  | Turn the power switch ON (IG).<br>Enter the following menus: DIAGNOSIS / ENHANCED<br>OBD II / SYSTEM CHECK / EVAP SYS CHECK / AUTO<br>OPERATION. |  |

(c) After the system check is finished, check for pending DTCs.



**REPAIR COMPLETED** 

DTC

# Coolant Pump Control Circuit Range / Performance

# DESCRIPTION

The coolant heat storage system uses an electric pump to supply hot coolant stored in the CHS tank into the cylinder head of the engine, in order to optimize engine starting combustion and reduce the amount of unburned gas that is discharged while the engine is started. Before the engine starts, the ECM operates the electric water pump to direct the hot coolant in the CHS tank into the engine, in order to heat the cylinder head (this process is called "preheat mode"). This system consists of the CHS tank, CHS water pump, CHS tank outlet temperature sensor, water valve, and a soak timer that is built in the ECM.

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                                                                                                                                        | Trouble Area                                                                                                                   |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| P2601   | <ul> <li>Following conditions are successively met:</li> <li>Difference in CHS tank outlet water<br/>temperature and engine coolant<br/>temperatures before and after starting<br/>preheating: within 2°C (3.6°F)</li> <li>Change in CHS tank outlet water<br/>temperature during soaking: Below 1°C<br/>(1.8°F) of its temperature before CHS<br/>water pump is ON</li> </ul> | <ul> <li>CHS water pump</li> <li>CHS water pump relay</li> <li>Open or short in CHS water pump circuit</li> <li>ECM</li> </ul> |

# **MONITOR DESCRIPTION**

The ECM detects malfunction in the coolant heat storage (CHS) system with the CHS tank coolant temperature, the position of the water valve, the running condition of the engine and the operating condition of the soak timer.

The soak timer built in the ECM prompts the ECM to actuate the water pump 5 hours after the HV system has been turned OFF by using the power switch. The ECM then checks the HV main system based on variations in the CHS tank outlet temperature (soak mode).

In order to ensure the reliable malfunction detection, the ECM detects the CHS water pump malfunction DTC in two ways. Thus, when the following two detection conditions are consecutively met, the ECM determines that there is malfunction in the water pump circuit and sets the DTC.

(1) Difference in the CHS tank outlet temperature and the engine coolant temperature before and after starting preheating at engine start (system start) is below 2°C (3.6°F).

(2) Variation in the CHS tank outlet temperature during soak mode is within 1°C (1.8°F) of its temperature before the CHS water pump was ON.

# **MONITOR STRATEGY**

| Related DTCs                | P2601: Coolant pump control circuit range/performance |
|-----------------------------|-------------------------------------------------------|
| Required sensors/components | Coolant heat storage tank outlet temperature sensor   |
| Frequency of operation      | Once per driving cycle                                |
| Duration                    | 10 seconds                                            |
| MIL operation               | 1 driving cycle                                       |
| Sequence of operation       | None                                                  |

# **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present                                    | None                   |
|-----------------------------------------------------------------------------------------------------|------------------------|
| Coolant heat storage system malfunction                                                             | Not detected           |
| CHS water pump operation time                                                                       | 3 seconds or more      |
| Variation in CHS tank outlet temperature and engine coolant temperature before and after preheating | 2°C (3.6°F) or less    |
| Storage coolant temperature                                                                         | More than 65°C (149°F) |

ΞS

# **TYPICAL MALFUNCTION THRESHOLDS**

 Difference in CHS tank outlet coolant temperature before and after
 Less than 1°C (1.8°F)

 CHS water pump ON

# WIRING DIAGRAM

Refer to DTC P1120 (see page ES-301).

# **INSPECTION PROCEDURE**

## CAUTION:

Be careful when replacing any part in the CHS system or changing the coolant because the coolant in the CHS tank is hot even if the engine and the radiator are cold.

# NOTICE:

1

If air bleeding is not performed completely, this DTC may be detected after changing the coolant. HINT:

- CHS stands for Coolant Heat Storage.
- Although the DTC title says "Coolant Pump", this DTC is related to the CHS water pump.
- The detection of this DTC indicates a malfunction in both the CHS water pump and the CHS W/P relay. Therefore, make sure to also check the relay when this DTC is output.
- To check the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition
  when malfunction is detected. When troubleshooting, freeze frame data can help determine if the
  vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or
  rich, and other data from the time the malfunction occurred.

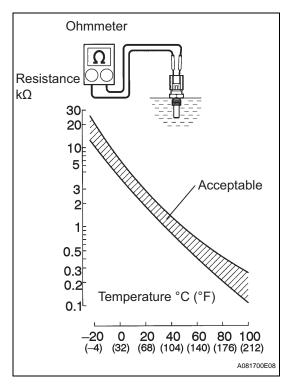
# CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P2601)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

| Display (DTC Output) | Proceed to |
|----------------------|------------|
| P2601                | Α          |
| P2601 and other DTCs | В          |

## HINT:

If any other codes besides P2601 are output, perform troubleshooting for those DTCs first.


**2** PERFORM ACTIVE TEST BY INTELLIGENT TESTER (OPERATE WATER PUMP)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.

- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / WATER PUMP.
- (e) Check that the CHS W/P relay operates and the operating sounds of the water pump occurs. Result

| Tester operation |  | Specified Condition                      |
|------------------|--|------------------------------------------|
| WATER PUMP ON    |  | CHS W/P relay and water pump<br>operates |
| NG Go to step    |  | ep 5                                     |

# INSPECT TEMPERATURE SENSOR (CHS TANK OUTLET TEMPERATURE SENSOR)



OK

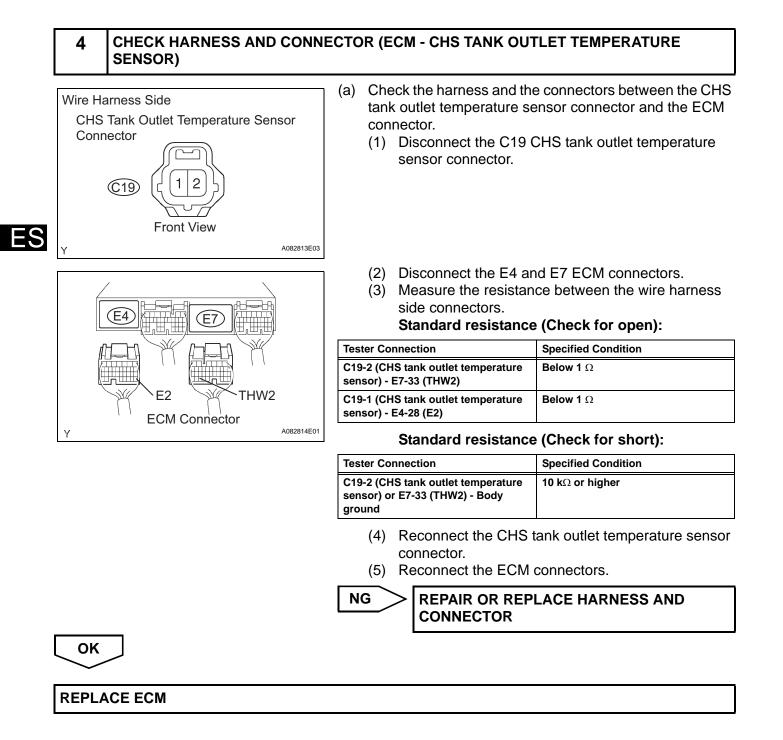
3

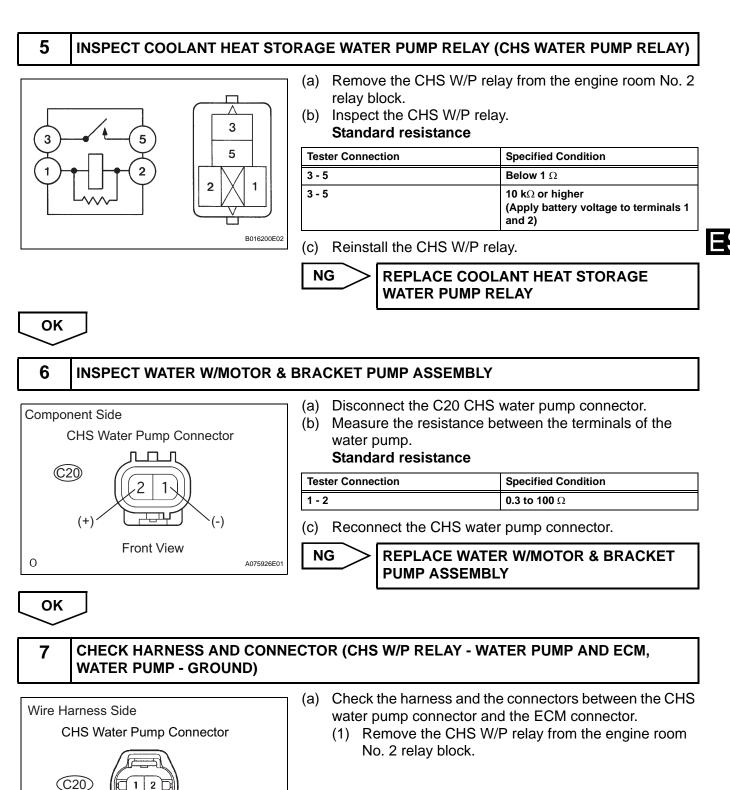
OK

- (a) Remove the coolant heat storage (CHS) tank outlet temperature sensor.
- (b) Measure the resistance between the terminals. **Standard resistance**

| Tester Connection | Specified Condition           |
|-------------------|-------------------------------|
| 1 - 2             | 2 to 3 kΩ at 20°C (68°F)      |
| 1 - 2             | 0.2 to 0.4 kΩ at 80°C (176°F) |

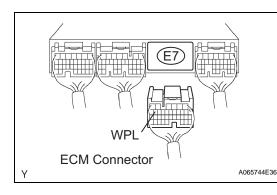
## NOTICE:


In case of checking the CHS tank outlet temperature sensor in the water, be careful not to allow water to contact the terminals. After checking, dry the sensor. HINT:

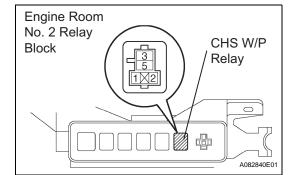

Alternate procedure: Connect an ohmmeter to the installed CHS tank outlet temperature sensor and read the resistance. Use an infrared thermometer to measure the CHS tank outlet temperature in the immediate vicinity of the sensor. Compare these values to the resistance/ temperature graph. Change the engine temperature (warm up or allow to cool down) and repeat the test.

(c) Reinstall the coolant heat storage tank outlet temperature sensor.

NG


REPLACE TEMPERATURE SENSOR






Front View

A052933E20



# ES



- (2) Disconnect the E7 ECM connector.
- (3) Measure the resistance between the wire harness side connectors.

# Standard resistance (Check for open)

| Tester Connection               | Specified Condition |
|---------------------------------|---------------------|
| E7-15 (WPL) - 2 (CHS W/P relay) | Below 1 $\Omega$    |

# Standard resistance (Check for short)

| Tester Connection                                 | Specified Condition     |
|---------------------------------------------------|-------------------------|
| 2 (CHS W/P relay) or E7-15 (WPL) -<br>Body ground | 10 k $\Omega$ or higher |

- (4) Reinstall the integration relay.
- (5) Reconnect the ECM connector.
- (b) Check the harness and the connectors between the CHS water pump connector and the CHS W/P relay.
  - (1) Disconnect the CHS water pump connector.
  - (2) Remove the CHS W/P relay from the engine room relay block No.2.
  - (3) Measure the resistance between the wire harness side connectors.

# Standard resistance (Check for open)

| Tester Connection                      | Specified Condition |
|----------------------------------------|---------------------|
| 2 (CHS water pump) - 5 (CHS W/P relay) | Below 1 $\Omega$    |
| 1 (CHS water pump) - Body ground       | Below 1 Ω           |

# Standard resistance (Check for short)

| Tester Connection                                        | Specified Condition     |
|----------------------------------------------------------|-------------------------|
| 2 (CHS water pump) or 5 (CHS W/P<br>relay) - Body ground | 10 k $\Omega$ or higher |

- (4) Reconnect the CHS water pump connector.
- (5) Reinstall the integration relay.

NG REPAIR OR REPLACE HARNESS AND CONNECTOR

ΟΚ

**REPLACE ECM** 

## ECM / PCM Internal Engine Off Timer Performance

#### MONITOR DESCRIPTION

To check the heat retention of the tank in the coolant heat storage (CHS) system, the ECM may cause the water pump of the CHS system to operate 5 hours after the power switch has been turned OFF. A timer and a clock are contained in the ECM internal circuit, and the timer starts when the power switch is turned OFF (this process is called the "soak mode").

When the HV main system is started at the power switch, the ECM monitors its internal circuit. If the ECM detects a deviation between the clock and the timer, or an abnormal condition during a comparison between the starting history and the length of time the HV main power has been turned OFF, the ECM determines that its internal circuit has malfunction and sets a DTC.

| DTC No. | DTC Detection Condition | Trouble Area |
|---------|-------------------------|--------------|
| P2610   | ECM internal error      | • ECM        |

#### MONITOR STRATEGY

| Related DTCs                       | P2610: ECM internal engine off timer performance |
|------------------------------------|--------------------------------------------------|
| Required sensors/components (main) | ECM                                              |
| Frequency of operation             | Once per driving cycle                           |
| Duration                           | 600 seconds                                      |
| MIL operation                      | 2 driving cycles                                 |
| Sequence of operation              | None                                             |

## **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None    |
|------------------------------------------------------------------|---------|
| Engine                                                           | Running |

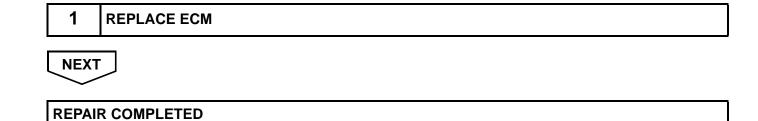
## **TYPICAL MALFUNCTION THRESHOLDS**

#### Case 1

| Time internal engine off timer clock reads when CPU clock has elapsed 600 seconds | Less than 420 seconds or more than 780 seconds |  |
|-----------------------------------------------------------------------------------|------------------------------------------------|--|
|-----------------------------------------------------------------------------------|------------------------------------------------|--|

#### Case 2

| Presents of history that ECM had woken up by internal engine off timer | YES                         |
|------------------------------------------------------------------------|-----------------------------|
| Time period vehicle has been soaked                                    | Less than programmed period |


#### Case 3

| Presents of history that ECM had woken up by internal engine off timer | NO                                      |
|------------------------------------------------------------------------|-----------------------------------------|
| Time period vehicle has been soaked                                    | More than or equal to programmed period |

## **INSPECTION PROCEDURE**

#### HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

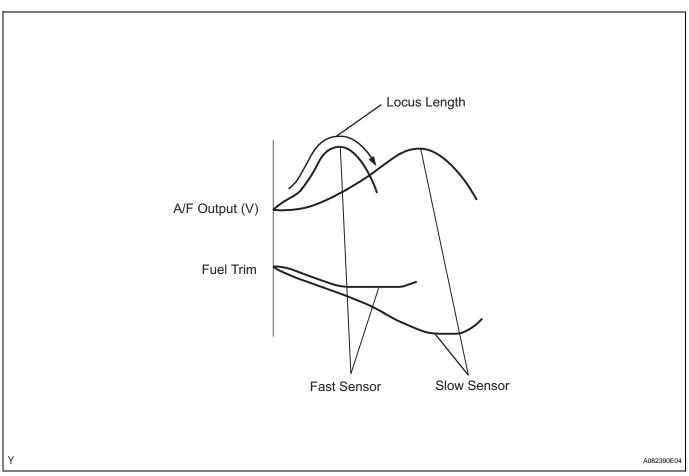


# ES

P2A00

## A/F Sensor Circuit Slow Response (Bank 1 Sensor 1)

## DESCRIPTION


Refer to DTC P2195 (see page ES-344).

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                                                                                                 | Trouble Area                                                                                                                                                                                                                                                                                                                  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P2A00   | When A/F sensor output voltage change is<br>below compared to fuel trim change, ECM<br>judges that A/F sensor circuit response is<br>slow if conditions (a), (b) and (c) are met (2<br>trip detection logic):<br>(a) After engine is warmed up<br>(b) Engine speed is 1,100 rpm or more<br>(c) Vehicle speed 37.5 mph (60 km/h) or more | <ul> <li>Open or short in A/F sensor (bank 1 sensor 1) circuit</li> <li>A/F sensor (bank 1 sensor 1)</li> <li>A/F sensor heater</li> <li>EFI M relay</li> <li>A/F sensor heater and relay circuit</li> <li>Air induction system</li> <li>Fuel pressure</li> <li>Injector</li> <li>PCV hose connection</li> <li>ECM</li> </ul> |

HINT:

Sensor 1 refers to the sensor mounted before the TWC and is located near the engine assembly.

#### MONITOR DESCRIPTION



The air fuel-ratio (A/F) sensor varies its output voltage in proportion to the air-fuel ratio. Based on the output voltage, the ECM determines if the air-fuel ratio is RICH or LEAN and adjusts the stoichiometric air-fuel ratio.

The ECM also checks the fuel injection volume compensation value to check if the A/F sensor is deteriorating or not. The output voltage variation, known as locus length, should be high when the air-fuel ratio fluctuates.

When the A/F sensor response rate has deteriorated, the locus length should be short. The ECM concludes that there is malfunction in the A/F sensor when the locus length is short and the response rate has deteriorated.

## **MONITOR STRATEGY**

| Related DTCs                | P2A00: A/F sensor circuit slow response                                      |
|-----------------------------|------------------------------------------------------------------------------|
| Required sensors/components | Main:<br>A/F sensor<br>Related:<br>Engine speed sensor, vehicle speed sensor |
| Frequency of operation      | Once per driving cycle                                                       |
| Duration                    | 60 seconds                                                                   |
| MIL operation               | 2 driving cycles                                                             |
| Sequence of operation       | None                                                                         |

F.S

## **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | P0031, P0032 (A/F sensor heater - Sensor 1)<br>P0100 - P0103 (MAF meter)<br>P0110 - P0113 (IAT sensor)<br>P0115 - P0118 (ECT sensor)<br>P0120 - P0223, P2135 (TP sensor)<br>P0125 (Insufficient ECT for closed loop)<br>P0171, P0172 (Fuel system)<br>P0300 - P0304 (Misfire)<br>P0335 (CKP sensor)<br>P0340, P0341 (CMP sensor)<br>P0442 - P0456 (EVAP system)<br>P0500 (VSS)<br>P2196 (A/F sensor - Rationality) |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engine                                                           | Running                                                                                                                                                                                                                                                                                                                                                                                                            |
| Time after first engine start                                    | 120 seconds                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fuel system status                                               | Closed-loop                                                                                                                                                                                                                                                                                                                                                                                                        |
| A/F sensor status                                                | Activated                                                                                                                                                                                                                                                                                                                                                                                                          |
| Idle                                                             | OFF                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time after idle off                                              | 2 seconds or more                                                                                                                                                                                                                                                                                                                                                                                                  |
| Engine speed                                                     | 1,100 rpm or more, and less than 3,400 rpm                                                                                                                                                                                                                                                                                                                                                                         |
| Vehicle speed                                                    | 37.5 mph (60 km/h) or more, and Less than 75 mph (120 km/h)                                                                                                                                                                                                                                                                                                                                                        |
| Fuel cut                                                         | OFF                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time after fuel cut is off                                       | 3 seconds or more                                                                                                                                                                                                                                                                                                                                                                                                  |

## **TYPICAL MALFUNCTION THRESHOLDS**

| ſ | Response rate deterioration level | 8 or more |
|---|-----------------------------------|-----------|
|   | Response rate detenoration level  | o or more |

## COMPONENT OPERATING RANGE

| Heated oxygen sensor heater current | 0.4 to 1.0 A (during idling and battery voltage 11 to 14 V) |
|-------------------------------------|-------------------------------------------------------------|
|-------------------------------------|-------------------------------------------------------------|

#### **MONITOR RESULT**

Refer to detailed information (see page ES-15).

#### WIRING DIAGRAM

Refer to DTC P2195 (see page ES-347).

#### **INSPECTION PROCEDURE**

HINT:

Malfunctioning areas can be found by performing the ACTIVE TEST / A/F CONTROL operation. The A/F CONTROL operation can determine if the A/F sensor, heated oxygen sensor or other potential trouble area are malfunctioning or not.

(a) Perform the ACTIVE TEST A/F CONTROL operation.

HINT:

The A/F CONTROL operation lowers the injection volume 12.5% or increases the injection volume 25%. (1) Connect the intelligent tester to the DLC3.

(2) Turn the power switch ON (IG).

(3) Put the engine in inspection mode (see page ES-1).

(4) Warm up the engine by running the engine at 2,500 rpm, depressing the accelerator pedal more than 60% for approximately 90 seconds.

(5) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / ACTIVE TEST / A/F CONTROL.(6) Perform the A/F CONTROL operation with the engine in an idle condition (press the right or left button).

Result:

A/F sensor reacts in accordance with increase and decrease of injection volume:

+25%  $\rightarrow$  rich output: Less than 3.0 V

-12.5%  $\rightarrow$  lean output: More than 3.35 V

Heated oxygen sensor reacts in accordance with increase and decrease of injection volume: +25%  $\rightarrow$  rich output: More than 0.55 V

-12.5%  $\rightarrow$  lean output: Less than 0.4 V

NOTICE:

The A/F sensor output has a few seconds of delay and the heated oxygen sensor output has about 20 seconds of delay at maximum.

| Case   | A/F Sensor (Set                                       | nsor 1) Output Voltage | HO2 Sensor (Se                                        | nsor 2) Output Voltage | Main Suspected<br>Trouble Area                                                     |
|--------|-------------------------------------------------------|------------------------|-------------------------------------------------------|------------------------|------------------------------------------------------------------------------------|
| 1      | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                    | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                    |                                                                                    |
|        | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V |                        | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | ЛОК                    | -                                                                                  |
| 2      | Injection Volume<br>+25%<br>-12.5%                    | ♠                      | Injection Volume<br>+25%<br>-12.5%                    | ♠                      | <ul> <li>A/F sensor</li> <li>A/F sensor heater</li> </ul>                          |
| L      | Output Voltage<br>Almost<br>no reaction               | NG                     | Output Voltage<br>More than 0.55 V<br>Less than 0.4 V | ок                     | A/F sensor circuit                                                                 |
| 3      | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                    | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                    | <ul> <li>HO2 sensor</li> <li>HO2 sensor heater</li> </ul>                          |
| 5      | Output Voltage<br>More than 3.35 V<br>Less than 3.0 V | —ок                    | Output Voltage<br>Almost<br>no reaction               | NG                     | <ul> <li>HO2 sensor realer</li> <li>HO2 sensor circuit</li> </ul>                  |
| 4      | Injection Volume<br>+25%<br>-12.5%                    | ♠[[[                   | Injection Volume<br>+25%<br>-12.5%                    | ♠[]                    | <ul> <li>Fuel Injector</li> <li>Fuel pressure</li> <li>Gas leakage from</li> </ul> |
| т<br>т | Output Voltage<br>Almost<br>no reaction               | NG                     | Output Voltage<br>Almost<br>no reaction               | NG                     | exhaust system (Air-<br>fuel ratio extremely<br>or lean rich)                      |

The following A/F CONTROL procedure enables the technician to check and graph the voltage output of both A/F sensor and heated oxygen sensor.

To display the graph, enter ACTIVE TEST/ A/F CONTROL/USER DATA, select "AFS B1S1 and O2S B1S2" by pressing the "YES" button followed by the "ENTER" button and then the "F4" button. HINT:

- DTC P2A00 may be also detected, when the air-fuel ratio stays RICH or LEAN.
- Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.
- A high A/F sensor voltage could be caused by a RICH air-fuel mixture. Check the conditions that would cause the engine to run with the RICH air-fuel mixture.
- A low A/F sensor voltage could be caused by a LEAN air-fuel mixture. Check the conditions that would cause the engine to run with the LEAN air-fuel mixture.

1 CHECK OTHER DTC OUTPUT (IN ADDITION TO A/F SENSOR DTC)

- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result

| Display (DTC Output) | Proceed to |
|----------------------|------------|
| P2A00                | A          |
| P2A00 and other DTCs | В          |

HINT:

If any other code besides P2A00 are output, perform troubleshooting for those DTCs first.

в >|GC

GO TO RELEVANT DTC CHART

A

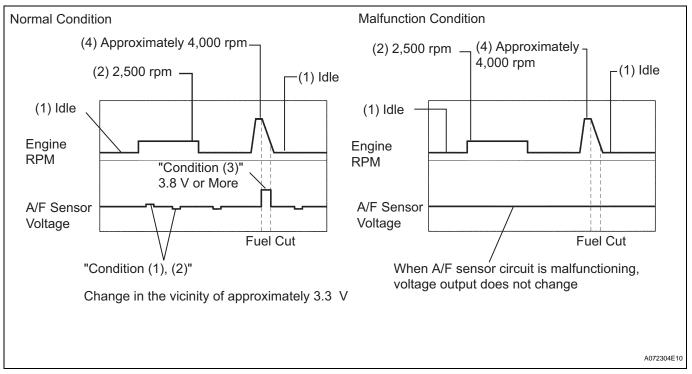
2

#### READ VALUE OF INTELLIGENT TESTER (OUTPUT VOLTAGE OF A/F SENSOR)

- (a) Connect the intelligent tester to the DLC 3.
- (b) Put the engine in inspection mode (see page ES-1).
- (c) Warm up the A/F sensors (bank 1 sensor 1) by running the engine at 2,500 rpm with the accelerator pedal depressed more than 60 % for approximately 90 seconds.
- (d) Read A/F sensor voltage output on the intelligent tester.
- (e) Enter the following menus: ENHANCED OBD II / SNAPSHOT / MANUAL SNAPSHOT / USER DATA.
- (f) Select "AFS B1 S1/ENGINE SPD" and press button "YES".
- (g) Monitor the A/F sensor voltage carefully.
- (h) Check the A/F sensor voltage output under the following conditions:
  - (1) Put the engine in inspection mode and allow the engine to idle for 30 seconds.

- (2) Put the engine in inspection mode and running the engine at 2,500 rpm with the accelerator pedal depressed more than 60% (where engine RPM is not suddenly changed).
- (3) Deactivate the inspection mode and drive the vehicle with shift position "B" range.
- (4) Accelerate the vehicle to 70 km/h (44 mph) and quickly release the accelerator pedal so that the throttle valve is fully closed.

#### CAUTION:


- Strictly observe of posted speed limits, traffic laws, and road conditions when performing these drive patterns.
- Do not drive the vehicle without deactivating inspection mode, otherwise damaging the transaxle may result.

#### OK:

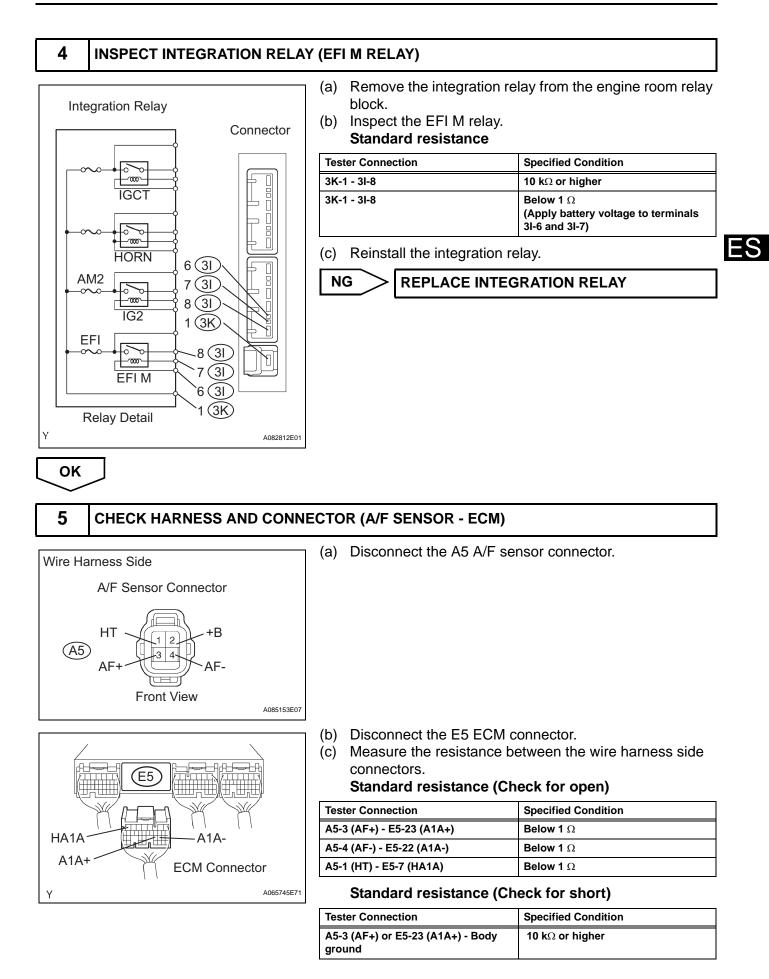
Condition (1) and (2)

Voltage changes in the vicinity of 3.3 V (between approximately 3.1 to 3.5 V) as shown in the illustration. Condition (4)

A/F sensor voltage increases to 3.8 V or more during engine deceleration (when fuel cut) as shown in the illustration.

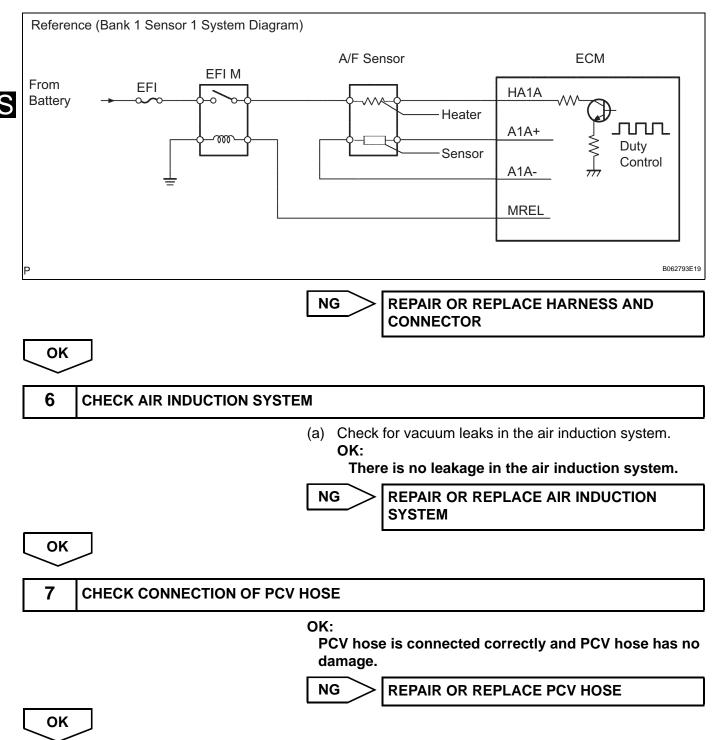


#### HINT:


 Whenever the output voltage of the A/F sensor remains at approximately 3.3 V (see diagram Malfunction Condition) under any condition as well as the above conditions, the A/ F sensor may have an open-circuit. (This will happen also when the A/F sensor heater has an open-circuit.)

- Whenever the output voltage of the A/F sensor remains at a certain value of approximately 3.8 V or more, or 2.8 V or less (see diagram Malfunction Condition) under any condition as well as the above conditions, the A/F sensor may have a short-circuit.
- The ECM will stop fuel injection (fuel cut) during engine deceleration. This will cause a LEAN condition and should result in a momentary increase in A/F sensor voltage output.
- The ECM must establish a closed throttle position learned value to perform fuel cut. If the battery terminal was reconnected, the vehicle must be driven over 10 mph to allow the ECM to learn the closed throttle position.
- When the vehicle is driven: The output voltage of the A/F sensor may be below 2.8 V during fuel enrichment. For the vehicle, this translates to a sudden increase in speed with the accelerator pedal fully depressed when trying to overtake another vehicle. The A/ F sensor is functioning normally.
- The A/F sensor is a current output element, and therefore the current is converted into voltage inside the ECM. If measuring voltage at connectors of A/F sensor or ECM, you will observe a constant voltage.

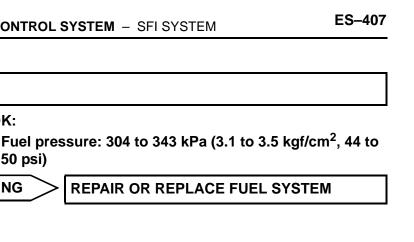
OK Go to step 14

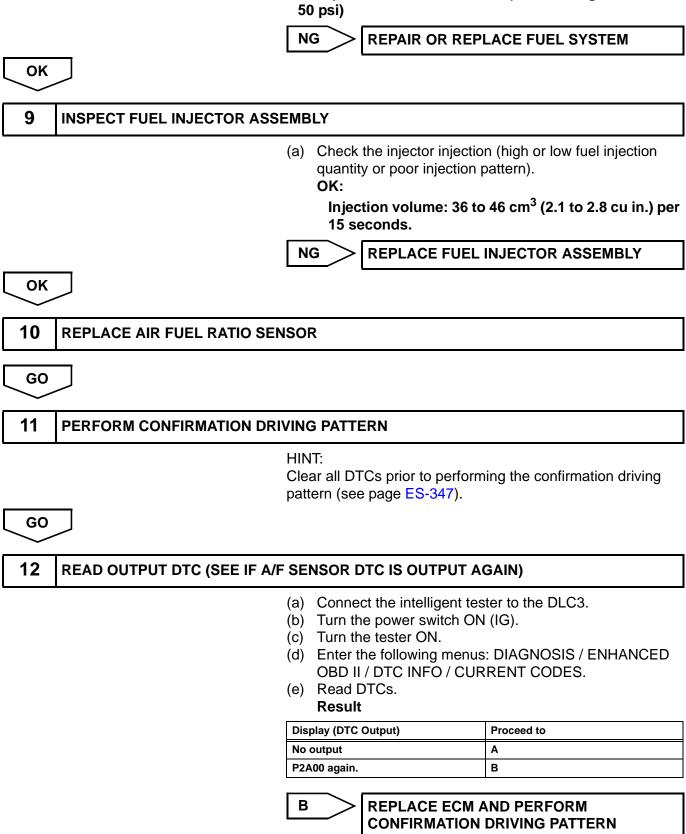

NG 3 **INSPECT AIR FUEL RATIO SENSOR (RESISTANCE OF A/F SENSOR HEATER)** Disconnect the A5 A/F sensor connector. (a) Component Side (b) Measure the resistance between the terminals of the A/F sensor. A/F Sensor Connector Standard resistance HT +B **Tester Connection** Resistance 1 (HT) - 2 (+B) 1.8 to 3.4 Ω at 20°C (68°F) (A5) 3 Reconnect the A/F sensor connector. (c) AF+ AF-Front View NG **REPLACE AIR FUEL RATIO SENSOR** A085152E51

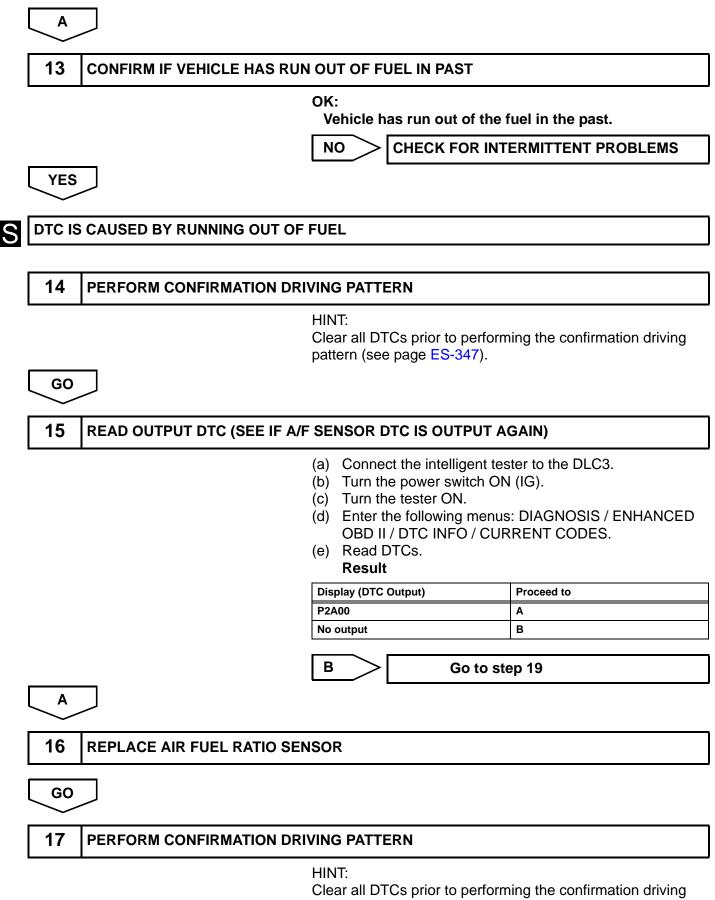
OK



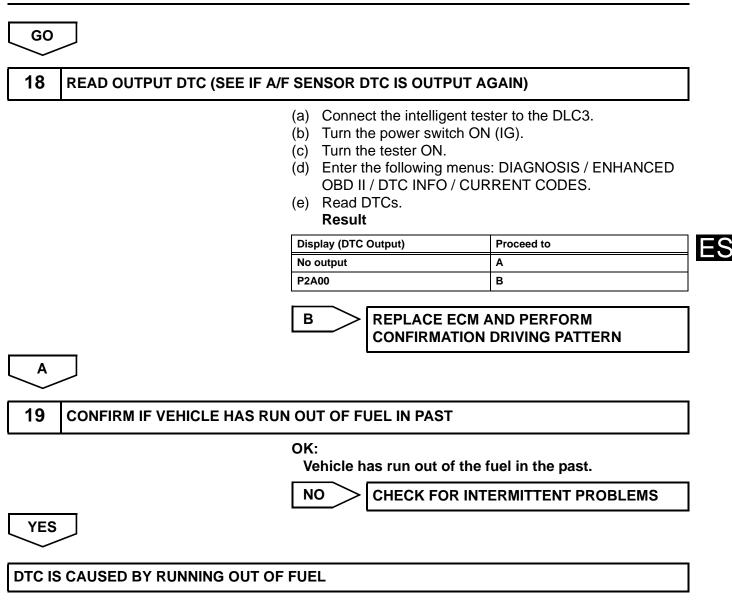
| Tester Connection                           | Specified Condition |
|---------------------------------------------|---------------------|
| A5-4 (AF-) or E5-22 (A1A-) - Body<br>ground | 10 kΩ or higher     |
| A5-1 (HT) or E5-7 (HA1A) - Body<br>ground   | 10 kΩ or higher     |


- (d) Reconnect the A/F sensor connector.
- (e) Reconnect the ECM connector.





OK:

8


CHECK FUEL PRESSURE







pattern (see page ES-347).



| DTC | P3190 | Poor Engine Power     |
|-----|-------|-----------------------|
| DTC | P3191 | Engine dose not Start |
| DTC | P3193 | Fuel Run Out          |

#### DESCRIPTION

From the HV ECU, the ECM receives data such as power output required for the engine (required output), estimated torque produced by the engine (estimated torque), engine RPM of control target (target RPM), whether the engine is in start mode or not. Then, based on the required output and target RPM, the ECM calculates a target torque that is to be produced by the engine and compares it with the estimated torque. If the estimated torque is very low compared with the target torque, or the engine start mode continues for the specific duration calculated by water temperature, an abnormal condition is detected.

| DTC No. | DTC Detection Condition                                                                                                                                                                                                                                                                                                                                         | Trouble Area                                                                                                                                                                                                                                                                           |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PP3190  | <ul> <li>Following conditions continue at a fixed<br/>engine RPM or a fixed length of time:</li> <li>Communication with HV ECU is normal</li> <li>Engine RPM is a fixed value or more</li> <li>Engine start mode is not active</li> <li>Target torque is a fixed value</li> <li>Ratio of estimated torque against target<br/>torque is less than 20%</li> </ul> | <ul> <li>Air induction system</li> <li>Throttle body</li> <li>Fuel pressure</li> <li>Engine</li> <li>Mass Air flow meter</li> <li>Out of fuel</li> <li>Engine coolant temperature sensor</li> <li>Crankshaft position sensor</li> <li>Camshaft position sensor</li> <li>ECM</li> </ul> |
| PP3191  | <ul> <li>Following conditions continue at a fixed<br/>engine RPM or a fixed length of time:</li> <li>Communication with HV ECU is normal</li> <li>Engine RPM is a fixed value or more</li> <li>Engine start mode is not active</li> </ul>                                                                                                                       | <ul> <li>Air induction system</li> <li>Throttle body</li> <li>Fuel pressure</li> <li>Engine</li> <li>Mass Air flow meter</li> <li>Out of fuel</li> <li>Engine coolant temperature sensor</li> <li>Crankshaft position sensor</li> <li>Camshaft position sensor</li> <li>ECM</li> </ul> |
| PP3193  | <ul> <li>Following conditions are met:</li> <li>Fuel low level signal input into ECM</li> <li>Detection condition for P3190 or P3191 is satisfied</li> </ul>                                                                                                                                                                                                    | <ul><li>Out of fuel</li><li>ECM</li></ul>                                                                                                                                                                                                                                              |

## **MONITOR DESCRIPTION**

The ECM and HV control ECU are connected by a communication line called CAN. The ECM sends information on the engine speed and other data to the HV control ECU while the HV control ECU sends the information such as a requirement for the engine power to the ECM using the CAN communication line.

When the communication between the ECM and HV control ECU is normal and the following items becomes specific condition, the ECM will illuminates the MIL and sets a DTC.

- (a) Engine speed
- (b) Power switch
- (c) Target torque
- (d) Ratio of target torque against estimated torque
- (e) Fuel level

## **MONITOR STRATEGY**

| Related DTCs | P3190: Poor engine power     |
|--------------|------------------------------|
|              | P3191: Engine does not start |
|              | P3193: Fuel run out          |

| Required sensors/components | Main sensors: Crankshaft position sensor<br>Related sensors: HV control ECU |
|-----------------------------|-----------------------------------------------------------------------------|
| Frequency of operation      | Continuous                                                                  |
| Duration                    | 100 engine revolutions and 6 seconds                                        |
| MIL operation               | Immediately                                                                 |
| Sequence of operation       | None                                                                        |

## **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None                                                     |
|------------------------------------------------------------------|----------------------------------------------------------|
| Fuel cut operation                                               | Not operated                                             |
| Engine speed                                                     | 750 rpm or more (varies with engine coolant temperature) |

## TYPICAL MALFUNCTION THRESHOLDS

#### Case1: P3190

| Time for low engine torque | 100 engine revolutions or more, or 6 seconds or more (varies with engine coolant temperature) |
|----------------------------|-----------------------------------------------------------------------------------------------|
| Case 2: P3101              |                                                                                               |

| Engine start no-determination time (receive from HV ECU) | 100 engine revolutions or more, and 6 seconds or more (varies with engine coolant temperature) |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|
|                                                          |                                                                                                |  |  |  |

#### Case3: P3193

| Time for low engine torque or Engine start no-determination time | 100 engine revolutions or more, and 6 seconds or more |
|------------------------------------------------------------------|-------------------------------------------------------|
|                                                                  | (varies with engine coolant temperature)              |

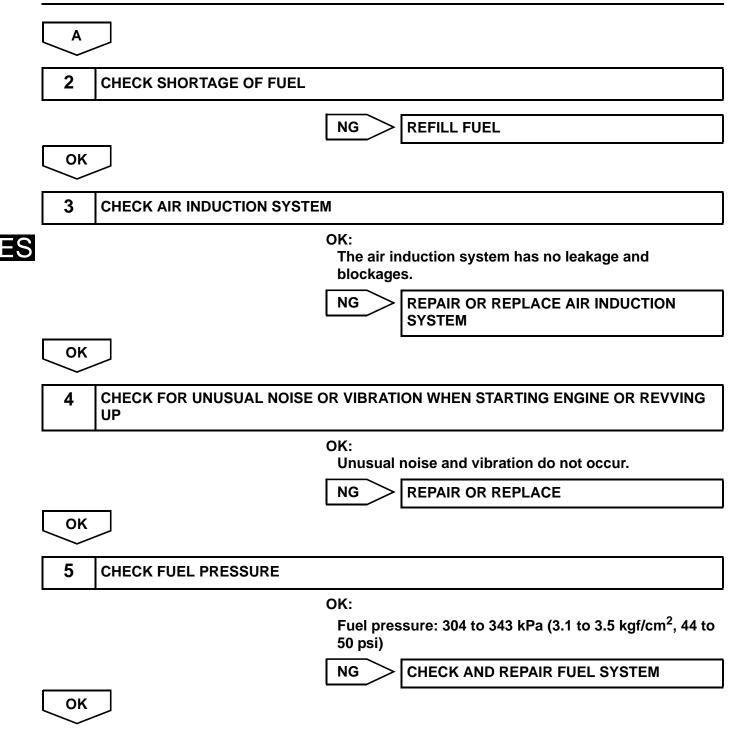
## **INSPECTION PROCEDURE**

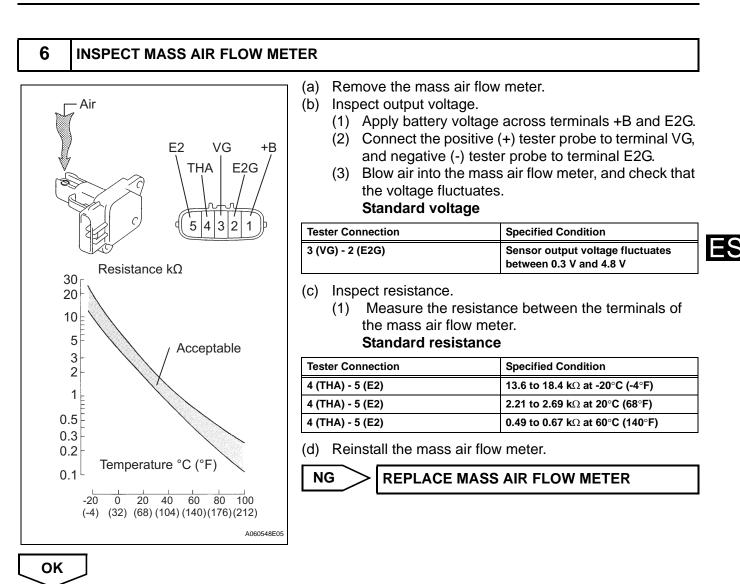
HINT:

Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.

1

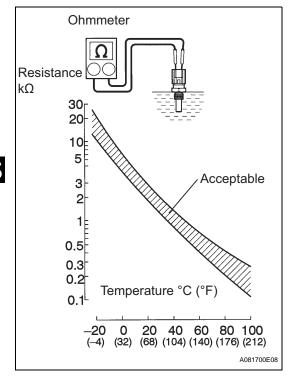
#### CHECK OTHER DTC OUTPUT (IN ADDITION TO DTC P3190, P3191 AND/OR P3193)


- (a) Connect the intelligent tester to the DLC3.
- (b) Turn the power switch ON (IG).
- (c) Turn the intelligent tester ON.
- (d) Enter the following menus: DIAGNOSIS / ENHANCED OBD II / DTC INFO / CURRENT CODES.
- (e) Read DTCs. Result


| Display (DTC output)                      | Proceed to |
|-------------------------------------------|------------|
| P3190, P3191 and/or P3193                 | A          |
| P3190, P3191 and/or P3193, and other DTCs | В          |

HINT:

If any other codes besides P3190, P3191 and/or P3193 are output, perform troubleshooting for those DTCs first.


<u>ES</u>





ES-413

#### 7 INSPECT ENGINE COOLANT TEMPERATURE SENSOR



- (a) Remove the engine coolant temperature sensor.
- (b) Measure the resistance between the terminals of the engine coolant temperature sensor.
   Standard resistance

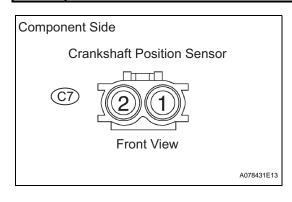
| Tester Connection | Specified Condition           |
|-------------------|-------------------------------|
| 1 - 2             | 2 to 3 kΩ at 20°C (68°F)      |
| 1 - 2             | 0.2 to 0.4 kΩ at 80°C (176°F) |

#### NOTICE:

When checking the engine coolant temperature sensor in water, be careful not to allow water to contact the terminals. After checking, dry the sensor. HINT:

Alternate procedure: Connect an ohmmeter to the installed engine coolant temperature sensor and read the resistance. Use an infrared thermometer to measure the engine temperature in the immediate vicinity of the sensor. Compare these values to the resistance/temperature graph. Change the engine temperature (warm up or allow to cool down) and repeat the test.

(c) Reinstall the engine coolant temperature sensor.


NG

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

## ОК

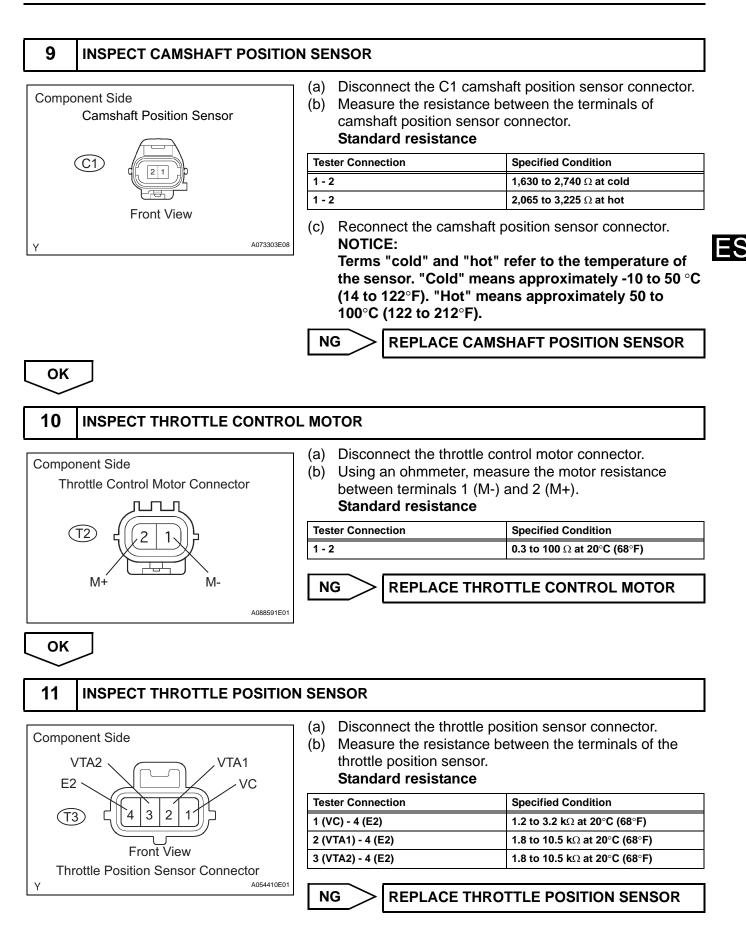
8

#### INSPECT CRANKSHAFT POSITION SENSOR



- (a) Disconnect the C7 crankshaft position sensor connector.(b) Measure the resistance between the terminals of the
  - crankshaft position sensor connector. Standard resistance

| Tester Connection | Specified Condition            |
|-------------------|--------------------------------|
| 1 - 2             | 985 to 1,600 $\Omega$ at cold  |
| 1 - 2             | 1,265 to 1,890 $\Omega$ at hot |


(c) Reconnect the crankshaft position sensor connector. **NOTICE:** 

Terms "cold" and "hot" refer to the temperature of the sensor. "Cold" means approximately -10 to 50 °C (14 to  $122^{\circ}$ F). "Hot" means approximately 50 to  $100^{\circ}$ C (122 to  $212^{\circ}$ F).

NG

#### REPLACE CRANKSHAFT POSITION SENSOR

OK



ES-415

ОК

**REPLACE ECM** 

| DTC |  |
|-----|--|
|     |  |

**U0293** 

## Lost Communication with HV ECU

#### DESCRIPTION

The Controller Area Network (CAN) is a serial data communication system for real-time application. It is a multiplex communication system designed for on-vehicle use that provides a superior communication speed of 500 kbps and a capability to detect malfunction. Through the combination of the CANH and CANL bus lines, the CAN is able to maintain communication based on differential voltage. HINT:

- Malfunction in the CAN bus (communication line) can be checked through the DLC3 connector, except in case of an open circuit in the DLC3 sub bus line.
- DTCs pertaining to CAN communication can be accessed through the use of the intelligent tester II (with CAN extension module).
- Malfunction in the DLC3 sub bus line cannot be detected through CAN communication, even though the DLC3 connector is connected to CAN communication.

| DTC No. | DTC Detection Condition                       | Trouble Area                                                  |
|---------|-----------------------------------------------|---------------------------------------------------------------|
| U0293   | When communication with HV ECU is interrupted | <ul> <li>Wire harness</li> <li>HV ECU</li> <li>ECM</li> </ul> |

#### MONITOR DESCRIPTION

The ECM and the HV control ECU are connected through a set of communication lines on the CAN, in order to maintain mutual communication. The ECM uses the communication lines to transmit the engine speed or other pieces of information to the HV control ECU. The HV control ECU transmits signals such as a engine torque request signal to the ECM.

A few seconds after the power switch is turned ON (IG), the ECM starts checking for any malfunction in the communication with the HV ECU. If the ECM detects a malfunction in the communication, the ECM sets a DTC and illuminates the MIL.

## **MONITOR STRATEGY**

| Related DTCs                | U0293: Lost communication with HV ECU |
|-----------------------------|---------------------------------------|
| Required sensors/components | ECM                                   |
| Frequency of operation      | Continuous                            |
| Duration                    | 0.68 seconds                          |
| MIL operation               | Immediately                           |
| Sequence of operation       | None                                  |

## **TYPICAL ENABLING CONDITIONS**

| The monitor will run whenever the following DTCs are not present | None |
|------------------------------------------------------------------|------|
| Power switch                                                     | ON   |

## TYPICAL MALFUNCTION THRESHOLDS

| Communication signal | No signal from HV ECU |
|----------------------|-----------------------|
|----------------------|-----------------------|

#### WIRING DIAGRAM

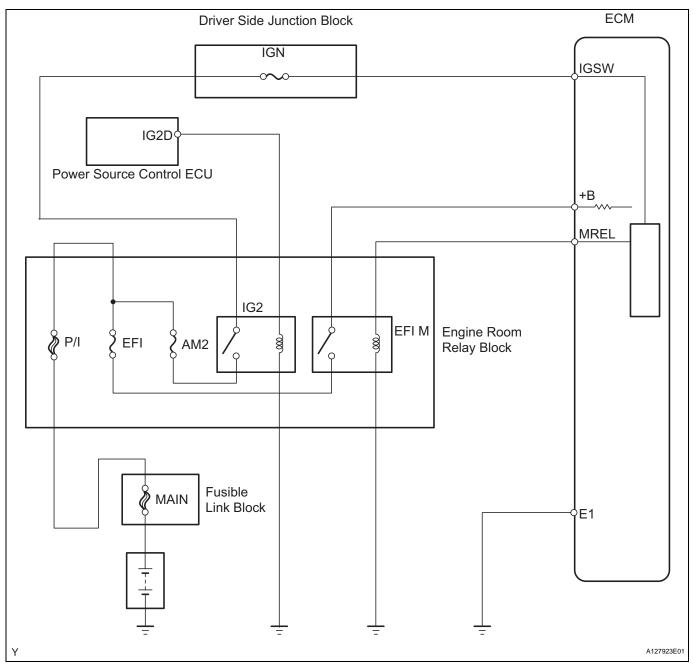
Refer to CAN Communication System (see page CA-4).

## **INSPECTION PROCEDURE**

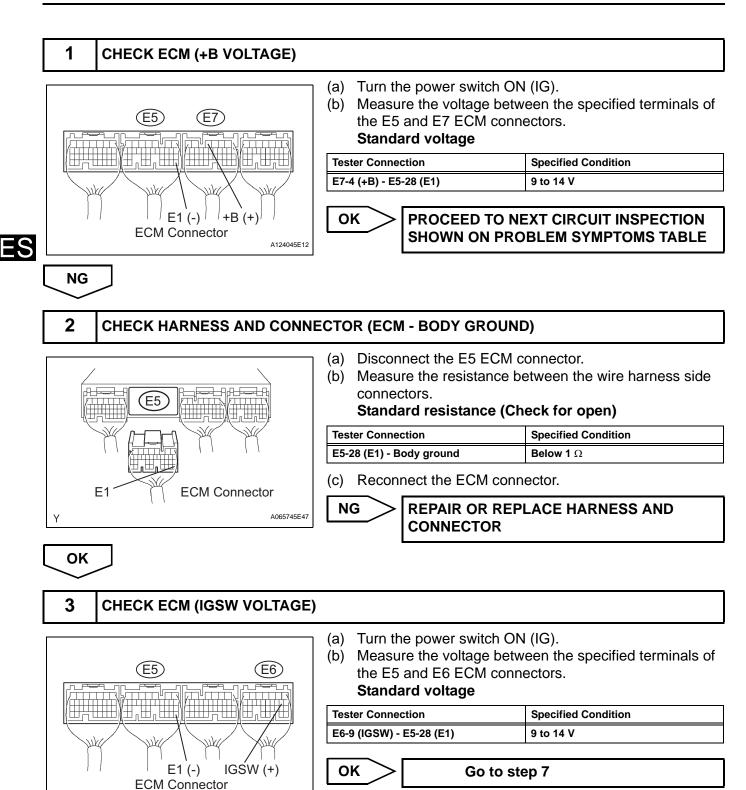
Refer to CAN Communication System (see page CA-6).

#### HINT:

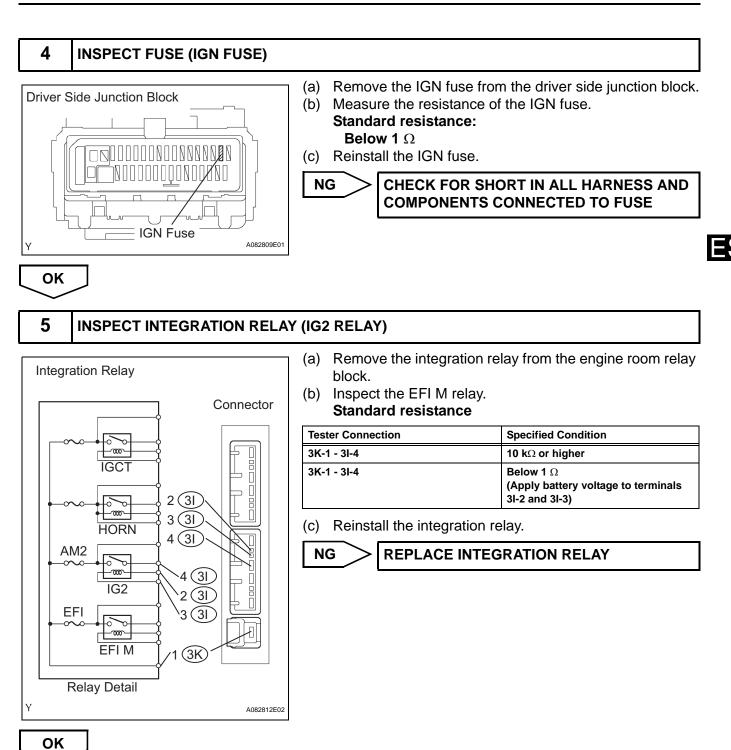
Read freeze frame data using the intelligent tester. Freeze frame data records the engine condition when malfunction is detected. When troubleshooting, freeze frame data can help determine if the vehicle was running or stopped, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data from the time the malfunction occurred.


## **ECM Power Source Circuit**

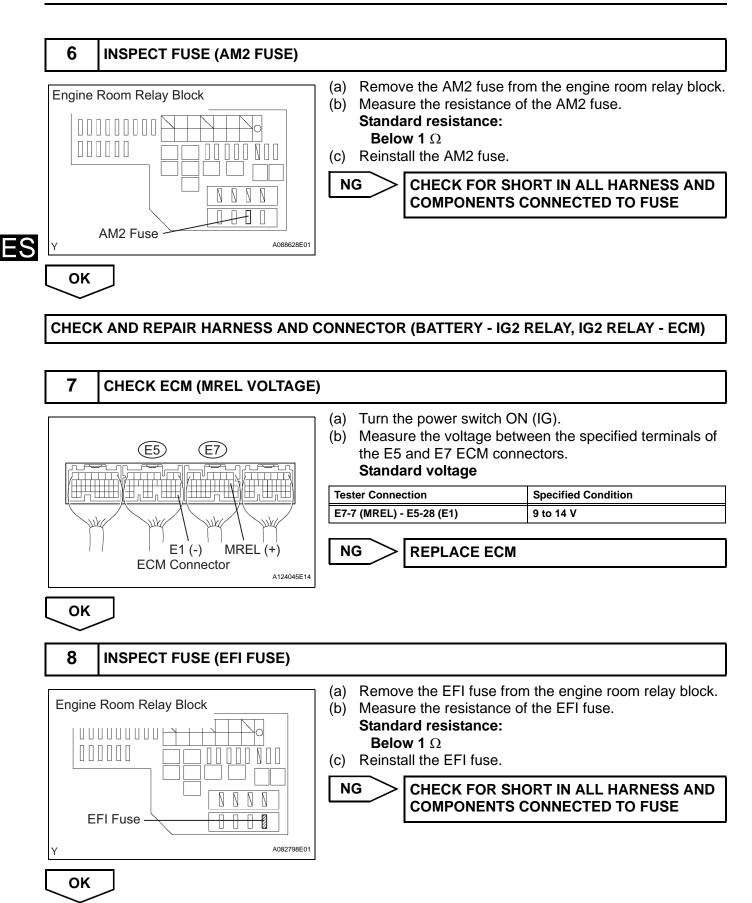
#### DESCRIPTION

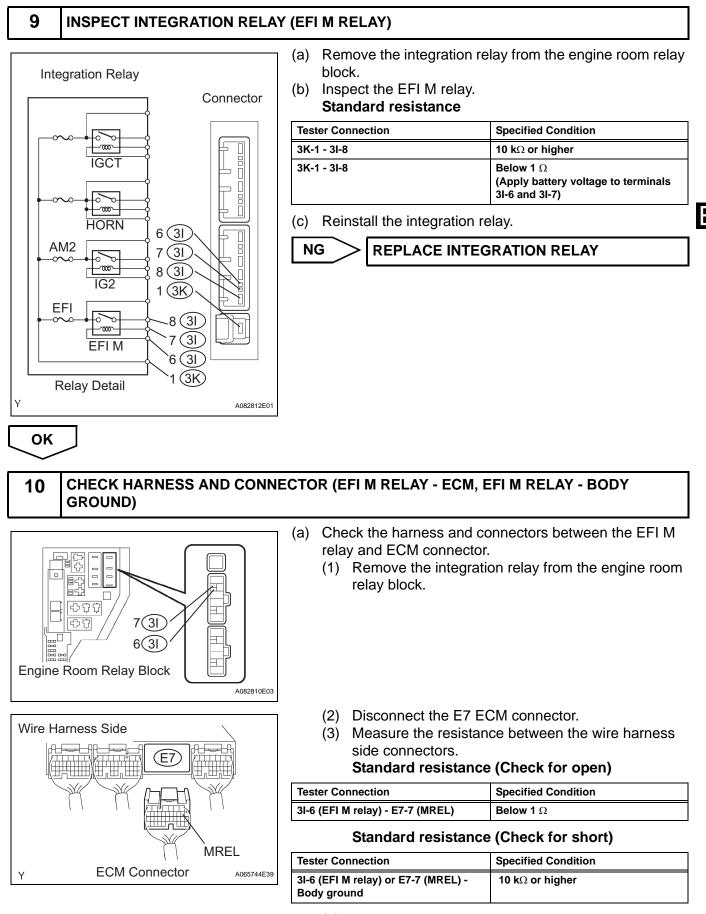

The power source circuit of the hybrid system differs from the conventional power source circuit in the method in which the battery voltage is supplied to IGSW terminal of the ECM. The hybrid system has adopted one relay to serve as the power switch, which is controlled by the power source control ECU. When the HV system is turned ON, the power source control ECU actuates the IG2 relay, which applies the battery voltage to IGSW terminal of the ECM. This causes the MREL terminal to transmit a signal to the EFI M relay. Then, the current that passes through the contact points of the EFI M relay (which is actuated by the MREL signal) flows to the +B terminal of the ECM.

When the power switch is turned OFF, the ECM keeps the EFI M relay ON for a maximum of 2 seconds, in order to initialize the throttle valve.


#### WIRING DIAGRAM




NG




A124045E13



ES-421





(4) Reinstall the integration relay.

- (5) Reconnect the ECM connector.
- (b) Check the harness and the connectors between the EFI M relay and the body ground.
  - (1) Remove the integration relay from the engine room relay block.
  - Measure the resistance between the wire harness side connector and the body ground.
     Standard resistance (Check for open)

| Tester Connection                | Specified Condition |
|----------------------------------|---------------------|
| 3I-7 (EFI M relay) - Body ground | Below 1 Ω           |

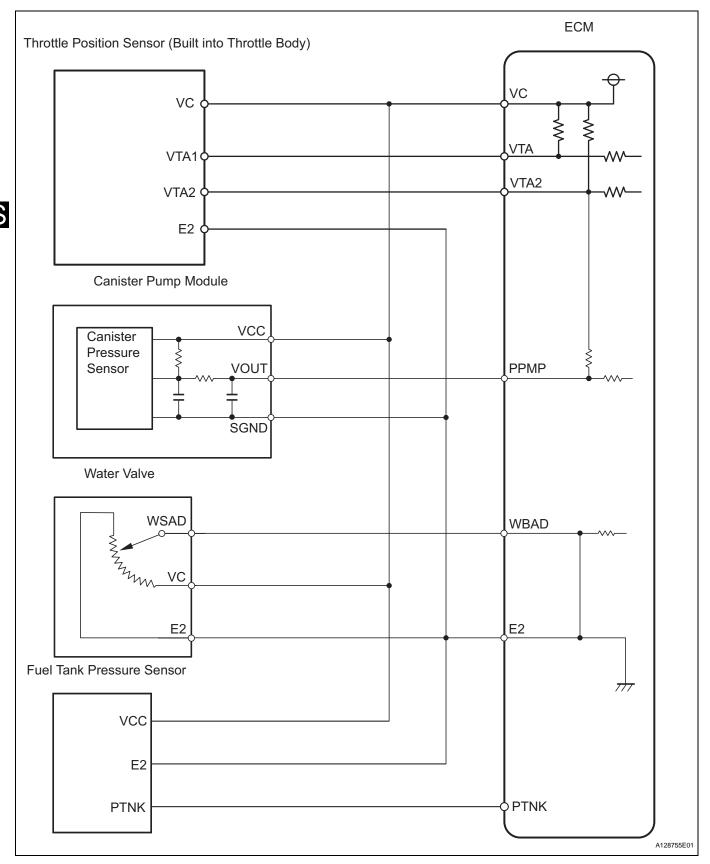
(3) Reinstall the integration relay.



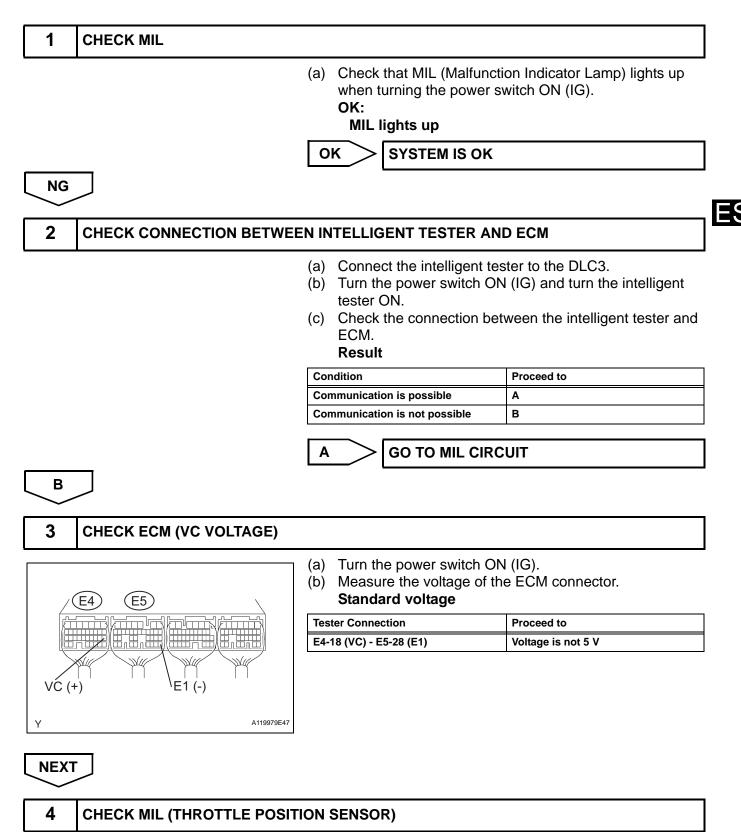


# CHECK AND REPAIR HARNESS AND CONNECTOR (TERMINAL +B OF ECM - BATTERY POSITIVE TERMINAL)

## VC Output Circuit


#### DESCRIPTION

The VC voltage (5 V) is generated in the ECM. The voltage is used to supply power to the throttle position sensor, canister pump module, etc.


ES

#### ES-426

#### WIRING DIAGRAM



#### **INSPECTION PROCEDURE**



- (a) Disconnect the T3 throttle body connector.
- (b) Turn the power switch ON (IG).
- (c) Check the MIL.

#### Result

| Condition               | Proceed to |
|-------------------------|------------|
| MIL illuminates         | A          |
| MIL does not illuminate | В          |





5

В

CHECK MIL (WATER VALVE)

- (a) Disconnect the W5 water valve connector.
- (b) Turn the power switch ON (IG).
- (c) Check the MIL. Result

| Condition               | Proceed to |
|-------------------------|------------|
| MIL illuminates         | Α          |
| MIL does not illuminate | В          |

A >

#### **REPLACE WATER VALVE**



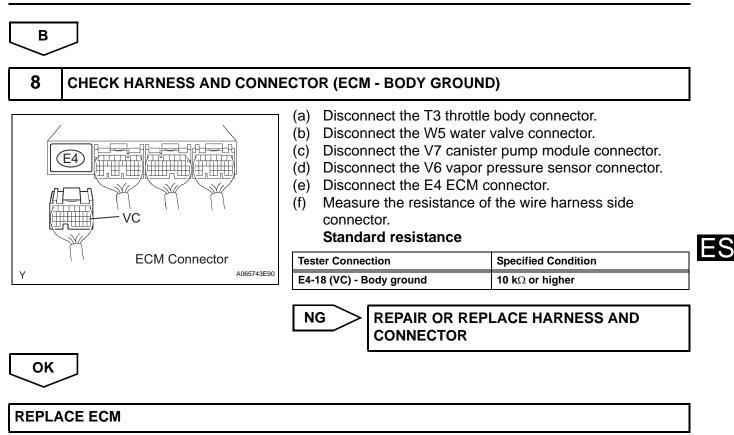
- (a) Disconnect the V7 canister pump module connector.
- (b) Turn the power switch ON (IG).
- (c) Check the MIL. Result

| Condition               | Proceed to |
|-------------------------|------------|
| MIL illuminates         | A          |
| MIL does not illuminate | В          |

A

REPLACE CHARCOAL CANISTER ASSEMBLY

В


#### 7 CHECK MIL (VAPOR PRESSURE SENSOR)

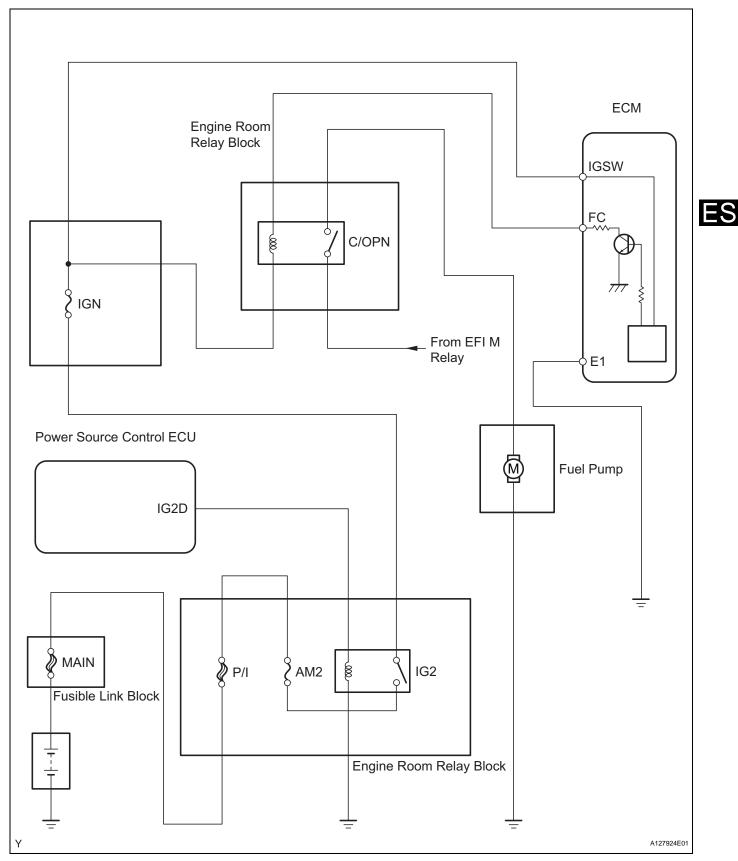
- (a) Disconnect the V6 vapor pressure sensor connector.
- (b) Turn the power switch ON (IG).
- (c) Check the MIL. Result

# Condition Proceed to MIL illuminates A MIL does not illuminate B

A

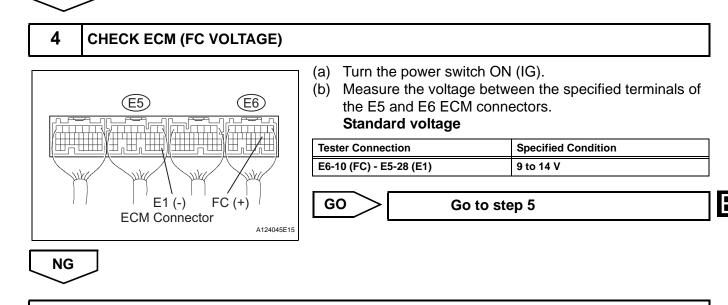
REPLACE VAPOR PRESSURE SENSOR




## **Fuel Pump Control Circuit**

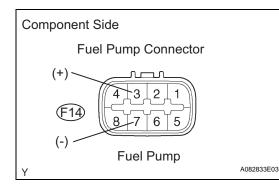
#### DESCRIPTION

The fuel pump is operated by the ECM according to the vehicle running condition. After the ECM receives the engine start requirement signal from the HV control ECU, an NE signal comes in immediately when the engine is cranked by MG1 (basically, the fuel pump can operate while the NE signal is generated). The ECM grounds the FC terminal line after receiving NE signal. It causes to energize the coil in the circuit opening relay, and the current flows to the fuel pump.


When the signal to stop the engine comes from the HV control ECU to the ECM, or when the fuel cut operation is performed such as decelerating by the engine brake, the fuel pump is stopped.

## WIRING DIAGRAM




## **INSPECTION PROCEDURE**

| 1              | RELAY)                      | ACTIVE TEST                                   | BYINI   | ELLIGENI                                                                                                                                               | TESTER (OPERA                                                            | ATE CIRCUIT OPENING                                                                                                                     |
|----------------|-----------------------------|-----------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                |                             |                                               |         | <ul> <li>(b) Turn th</li> <li>(c) Turn th</li> <li>(d) Enter th</li> <li>OBD II</li> <li>(e) Check</li> <li>tester.</li> <li>OK:</li> </ul>            | / ACTIVE TEST / the relay operation                                      |                                                                                                                                         |
|                |                             |                                               |         | ок                                                                                                                                                     | PROCEED TO N<br>SHOWN IN PRO                                             | IEXT CIRCUIT INSPECTION<br>BLEMS TABLE                                                                                                  |
| NG             | $\supset$                   |                                               |         |                                                                                                                                                        |                                                                          |                                                                                                                                         |
| 2              | INSPECT PO                  | OWER SOUR                                     | CE CIRC | CUIT                                                                                                                                                   |                                                                          |                                                                                                                                         |
|                |                             |                                               |         | NG                                                                                                                                                     | REPAIR OR REF                                                            | PLACE POWER SOURCE<br>ONENTS                                                                                                            |
|                |                             |                                               |         |                                                                                                                                                        |                                                                          |                                                                                                                                         |
| ОК             | $\supset$                   |                                               |         |                                                                                                                                                        |                                                                          |                                                                                                                                         |
| <u>ок</u><br>3 | <u> </u>                    | TEGRATION                                     | RELAY   | (C/OPN RE                                                                                                                                              | L                                                                        |                                                                                                                                         |
| 3              | INSPECT IN                  | TEGRATION                                     |         | (a) Remov<br>block.<br>(b) Inspec                                                                                                                      | •                                                                        | elay from the engine room relay<br>ng relay.                                                                                            |
| 3              |                             | Conn                                          |         | (a) Remov<br>block.<br>(b) Inspec                                                                                                                      | ve the integration retrieved to the circuit openin<br>ard resistance     |                                                                                                                                         |
| 3              | INSPECT IN                  | Conne<br>}                                    | ector   | (a) Remov<br>block.<br>(b) Inspec<br><b>Stand</b> a                                                                                                    | ve the integration retrieved to the circuit openin<br>ard resistance     | ng relay.                                                                                                                               |
| 3              | INSPECT IN<br>gration Relay | Conne                                         |         | <ul> <li>(a) Remove block.</li> <li>(b) Inspect Standa</li> <li>Tester Connert</li> </ul>                                                              | ve the integration retrieved to the circuit openin<br>ard resistance     | ng relay. Specified Condition                                                                                                           |
| 3              | INSPECT IN<br>gration Relay | Conne                                         |         | <ul> <li>(a) Remove block.</li> <li>(b) Inspect Stands</li> <li>Tester Conner</li> <li>3G-5 - 3G-8</li> <li>3G-5 - 3G-8</li> </ul>                     | ve the integration retrieved to the circuit openin<br>ard resistance     | ng relay.<br>Specified Condition<br>10 kΩ or higher<br>Below 1 Ω<br>(Apply battery voltage to terminals<br>3G-6 and 3G-7)               |
| 3              | INSPECT IN<br>pration Relay | 5 3G                                          |         | <ul> <li>(a) Remove block.</li> <li>(b) Inspect Stands</li> <li>Tester Conner</li> <li>3G-5 - 3G-8</li> <li>3G-5 - 3G-8</li> </ul>                     | ve the integration re<br>t the circuit openin<br>ard resistance<br>ction | ng relay.<br>Specified Condition<br>10 kΩ or higher<br>Below 1 Ω<br>(Apply battery voltage to terminals<br>3G-6 and 3G-7)               |
| 3              | INSPECT IN<br>pration Relay | 5 3G                                          | ector   | <ul> <li>(a) Remove block.</li> <li>(b) Inspect Stands</li> <li>Tester Conner</li> <li>3G-5 - 3G-8</li> <li>3G-5 - 3G-8</li> <li>(c) Reinst</li> </ul> | ve the integration re<br>t the circuit openin<br>ard resistance<br>ction | Specified Condition         10 kΩ or higher         Below 1 Ω         (Apply battery voltage to terminals 3G-6 and 3G-7)         relay. |
| 3              | INSPECT IN<br>pration Relay | Conne<br>5 36<br>6 36<br>7 36<br>8 36<br>8 36 | ector   | <ul> <li>(a) Remove block.</li> <li>(b) Inspect Stands</li> <li>Tester Conner</li> <li>3G-5 - 3G-8</li> <li>3G-5 - 3G-8</li> <li>(c) Reinst</li> </ul> | ve the integration re<br>t the circuit openin<br>ard resistance<br>ction | Specified Condition         10 kΩ or higher         Below 1 Ω         (Apply battery voltage to terminals 3G-6 and 3G-7)         relay. |
| 3              | INSPECT IN<br>pration Relay | Conne<br>5 36<br>6 36<br>7 36<br>8 36<br>5 36 | ector   | <ul> <li>(a) Remove block.</li> <li>(b) Inspect Stands</li> <li>Tester Conner</li> <li>3G-5 - 3G-8</li> <li>3G-5 - 3G-8</li> <li>(c) Reinst</li> </ul> | ve the integration re<br>t the circuit openin<br>ard resistance<br>ction | Specified Condition         10 kΩ or higher         Below 1 Ω         (Apply battery voltage to terminals 3G-6 and 3G-7)         relay. |



CHECK AND REPAIR HARNESS AND CONNECTOR

## 5 INSPECT FUEL PUMP

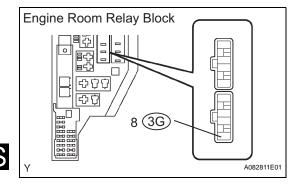


- (a) Disconnect the F14 fuel pump connector.
- (b) Inspect the fuel pump resistance.
  - (1) Measure the resistance between terminals 3 and 7. **Standard resistance**

| Tester Connection | Specified Condition         |
|-------------------|-----------------------------|
| 3 - 7             | 0.2 to 3.0 Ω at 20°C (68°F) |

- (c) Inspect the fuel pump operation.
  - (1) Apply battery voltage to the fuel pump terminals. Check that the pump operates.

NOTICE:


- These tests must be done quickly (within 10 seconds) to prevent the coil from burning out.
- Keep fuel pump as far away from the battery as possible.
- Always do the switching at the battery side.
- (d) Reconnect the fuel pump connector.



ОК

OK

# 6 CHECK HARNESS AND CONNECTOR (C/OPN RELAY - FUEL PUMP, FUEL PUMP - BODY GROUND)



**Fuel Pump Connector** 

3

Front View

(+)

(-)

- (a) Check the harness and the connectors between the circuit opening relay and the fuel pump connector.
  - (1) Remove the integration relay from the engine room relay block.
  - (2) Disconnect the F14 fuel pump connector.
  - (3) Measure the resistance between the wire harness side connectors.

#### Standard resistance (Check for open)

| Tester Connection                    | Specified Condition |
|--------------------------------------|---------------------|
| 3G-8 (Circuit opening relay) - F14-3 | Below 1 Ω           |
| (Fuel pump)                          |                     |

#### Standard resistance (Check for short)

| Tester Connection                                                   | Specified Condition     |
|---------------------------------------------------------------------|-------------------------|
| 3G-8 (Circuit opening relay ) or F14-3<br>(Fuel pump) - Body ground | 10 k $\Omega$ or higher |

- (4) Reinstall the integration relay.
- (5) Reconnect the fuel pump connector.
- (b) Check the harness and the connectors between the fuel pump connector and the body ground.
  - (1) Disconnect the F14 fuel pump connector.
  - (2) Measure the resistance between the wire harness side connector and the body ground.

**REPAIR OR REPLACE HARNESS AND** 

#### Standard resistance (Check for open)

| Tester Connection               | Specified Condition |
|---------------------------------|---------------------|
| F14-7 (Fuel pump) - Body ground | Below 1 $\Omega$    |

(3) Reconnect the fuel pump connector.

CONNECTOR

\_\_\_\_

NG

A082834E01

OK

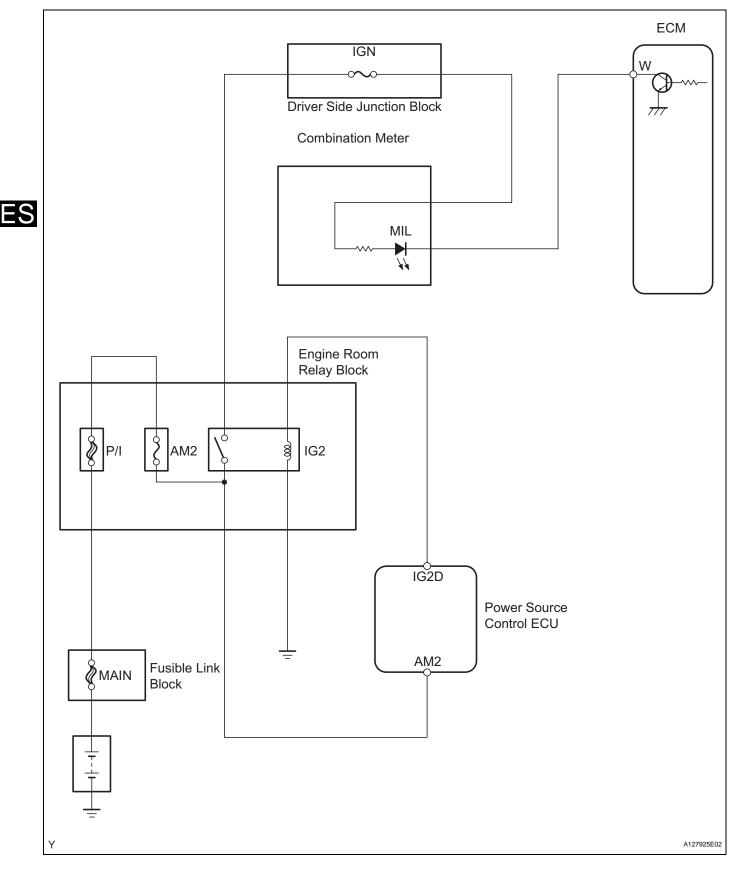
### **REPLACE ECM**

Wire Harness Side

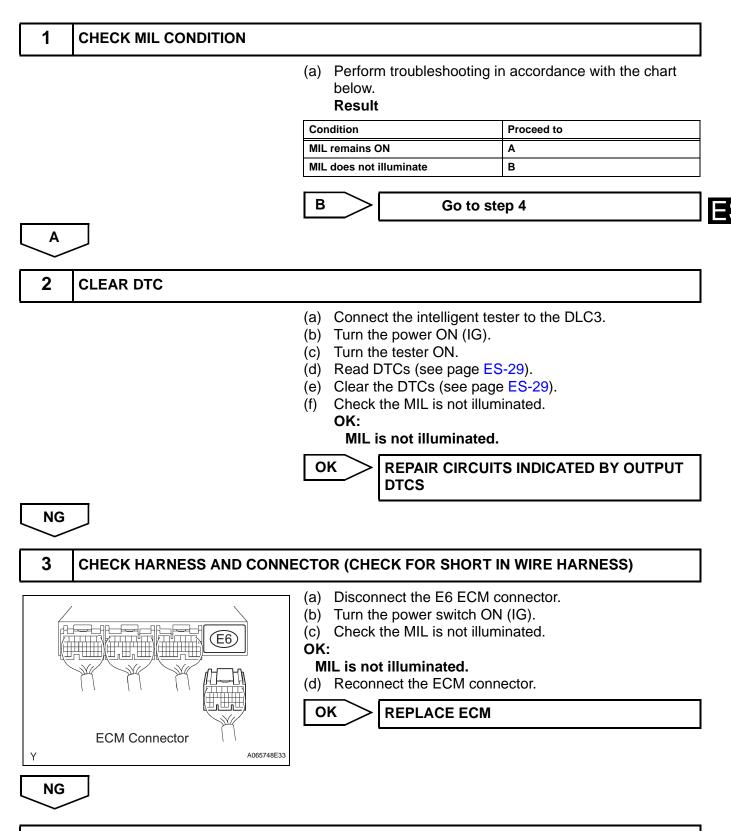
(F14)

## **MIL Circuit**

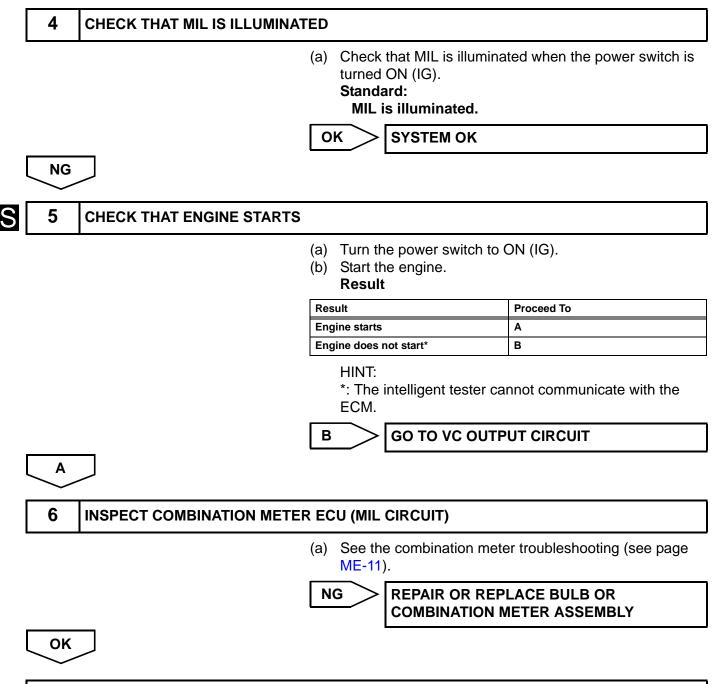
#### DESCRIPTION


The IG2 relay energized by the power source control ECU applies the battery voltage to the malfunction indicator lamp (MIL) in the combination meter while the main system is turned ON.

When it is necessary, the ECM grounds the W terminal line and illuminates the MIL.


In order to perform functional check visually, the MIL is illuminated when the power switch is first turned ON (IG).

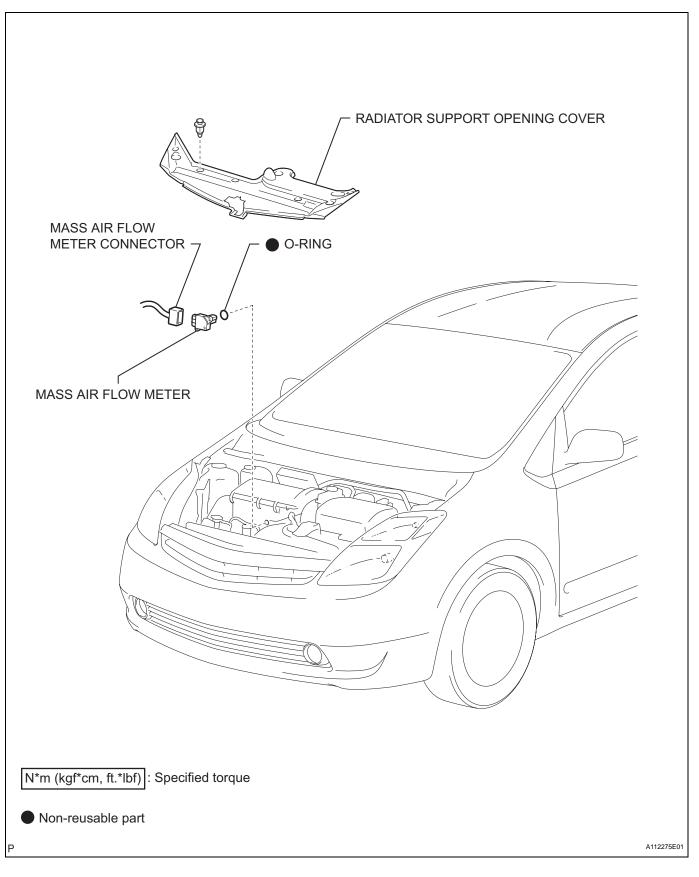
If the MIL is ON or OFF all of the time, use the procedure below to troubleshoot it. The MIL is used to indicate vehicle malfunction which was detected by the ECM. Follow this procedure using the intelligent tester or the OBD II scan tool to determine cause of the problem and to check the MIL.


### WIRING DIAGRAM



#### **INSPECTION PROCEDURE**




CHECK AND REPAIR HARNESS AND CONNECTOR (COMBINATION METER - ECM)

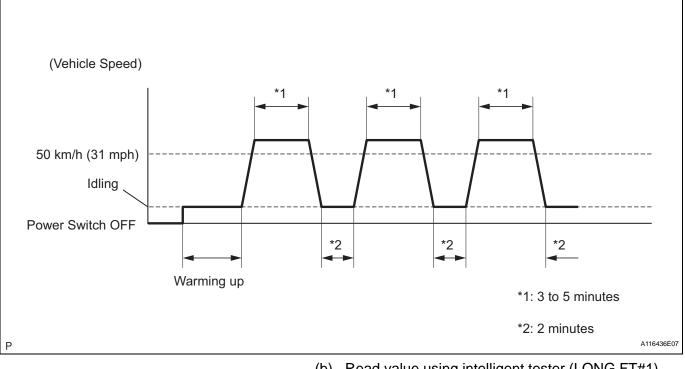


CHECK AND REPAIR HARNESS AND CONNECTOR (COMBINATION METER - ECM)

ES

## MASS AIR FLOW METER

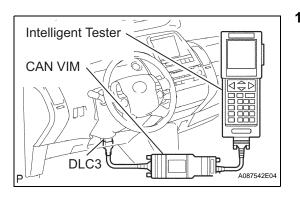



## **ON-VEHICLE INSPECTION**

#### NOTICE:

- Perform the MAF meter inspection according to the procedures below.
- Only replace the MAF meter when both the LONG FT#1 value and MAF value in the DATA LIST (with the engine stopped) are not within the normal operating range.

#### 1. CHECK MASS AIR FLOW METER


- (a) Perform confirmation driving pattern.
  - (1) Connect the intelligent tester to the DLC3.
  - (2) Turn the power switch ON.
  - (3) Turn the intelligent tester ON.
  - (4) Clear the DTCs (see page ES-29).
  - (5) Start the engine and warm it up with all accessory switches OFF (until the engine coolant temperature is 75°C (167°F) or more).
  - (6) Drive the vehicle at 50 km/h (31 mph) or more for 3 minutes or more\*1.
  - (7) Let the engine to idle (accelerator pedal fully released) for 2 minutes or more\*2.
  - (8) Perform steps \*1 and \*2 at least 3 times.



- (b) Read value using intelligent tester (LONG FT#1).
  - (1) Enter the following menus: Powertrain / Engine and ECT / Data List / Long FT#1.
  - (2) Read the values displayed on the tester. **Standard value:**

#### Within -15 to +15 %

If the result is not within the specified range, perform the inspection below.

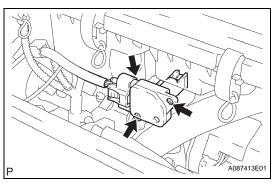


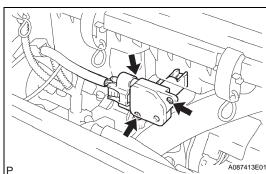
- (c) Read value using intelligent tester (MAF). **NOTICE:** 
  - Turn off the engine.
  - Perform the inspection with the vehicle indoors and on a level surface.
  - Perform the inspection of the MAF meter while it is installed to the air cleaner case (installed to the vehicle).
  - During the test, do not use the exhaust air duct to perform suction on the exhaust pipe.
  - (1) Turn the power switch ON (ACC).
  - (2) Turn the power switch ON (do not start the engine).
  - (3) Turn the intelligent tester ON.
  - (4) Enter the following menus: Powertrain / Engine and ECT / Data List / MAF.
  - (5) Wait 30 seconds, and read the values on the intelligent tester.

#### Standard condition: Less than 0.07 g/sec.

- If the result is not as specified, replace the MAF meter.
- If the result is within the specified range, inspect the cause of the extremely rich or lean air fuel ratio (see page ES-128).

## REMOVAL


1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

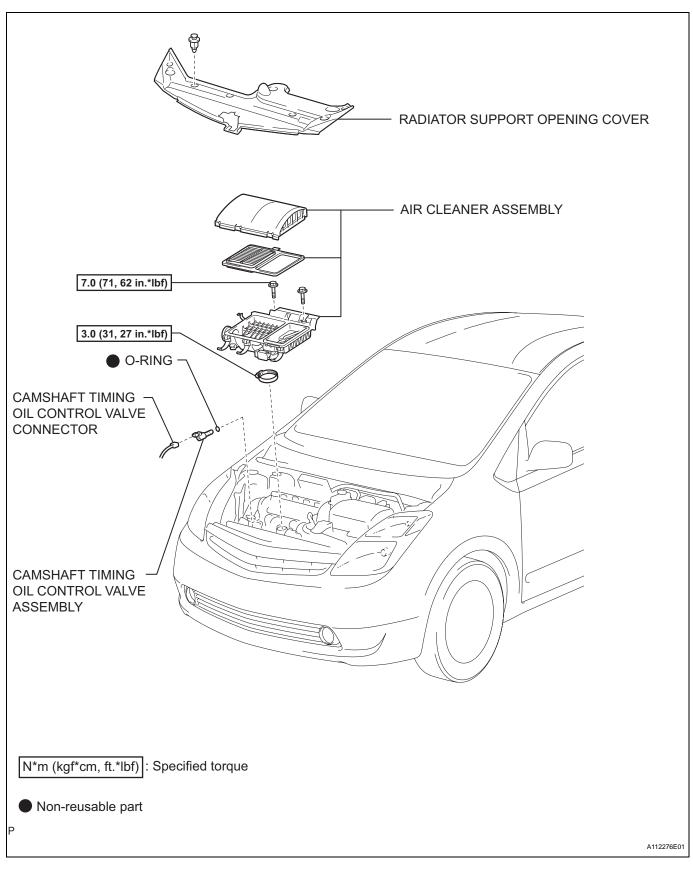

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

2. REMOVE RADIATOR SUPPORT OPENING COVER (See page ES-450)

#### 3. REMOVE MASS AIR FLOW METER

- (a) Disconnect the MAF meter connector.
- (b) Remove the 2 screws and MAF meter.



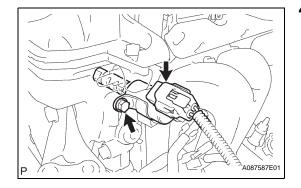



## INSTALLATION

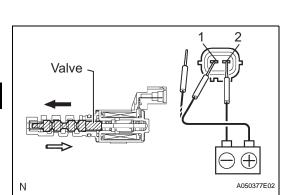
- 1. INSTALL MASS AIR FLOW METER
  - (a) Install a new O-ring to the MAF meter.
  - (b) Install the MAF meter with the 2 screws.
  - (c) Connect the MAF meter connector.
- 2. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 3. INSTALL RADIATOR SUPPORT OPENING COVER (See page ES-454)
- 4. PERFORM INITIALIZATION
  - (a) Perform initialization (see page IN-32). NOTICE:

Certain systems need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal. ES

## CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY




## REMOVAL


1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

- 2. REMOVE RADIATOR SUPPORT OPENING COVER (See page ES-450)
- 3. REMOVE AIR CLEANER ASSEMBLY (See page ES-450)
- 4. REMOVE CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY
  - (a) Disconnect the camshaft timing oil control valve connector.
  - (b) Remove the bolt and camshaft timing oil control valve.



ES



## INSPECTION

- 1. INSPECT CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY
  - (a) Measure the resistance of the oil control valve. **Standard resistance:**

#### 6.9 to 7.9 Ω at 20°C (68°F)

If the result is not as specified, replace the camshaft timing oil control valve assembly.

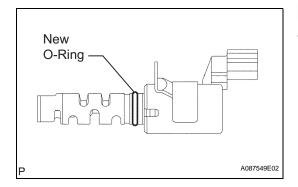
- (b) Inspect the operation.
  - (1) Connect the battery positive (+) lead to terminal 1 and negative (-) lead to terminal 2, and inspect the movement of the valve.
     Specified condition

| Condition                               | Specified Condition                                        |
|-----------------------------------------|------------------------------------------------------------|
| Battery positive (+) voltage is applied | Valve moves in black arrow direction shown in illustration |
| Battery positive (+) voltage is cut off | Valve moves in white arrow direction shown in illustration |

If the result is not as specified, replace the camshaft timing oil control valve assembly. **NOTICE:** 

Confirm that the valve moves freely and is not stuck in any position. HINT:

Foreign objects in the oil can cause subtle pressure leaks in the valve. The pressure leaks will cause the cam to advance. This condition

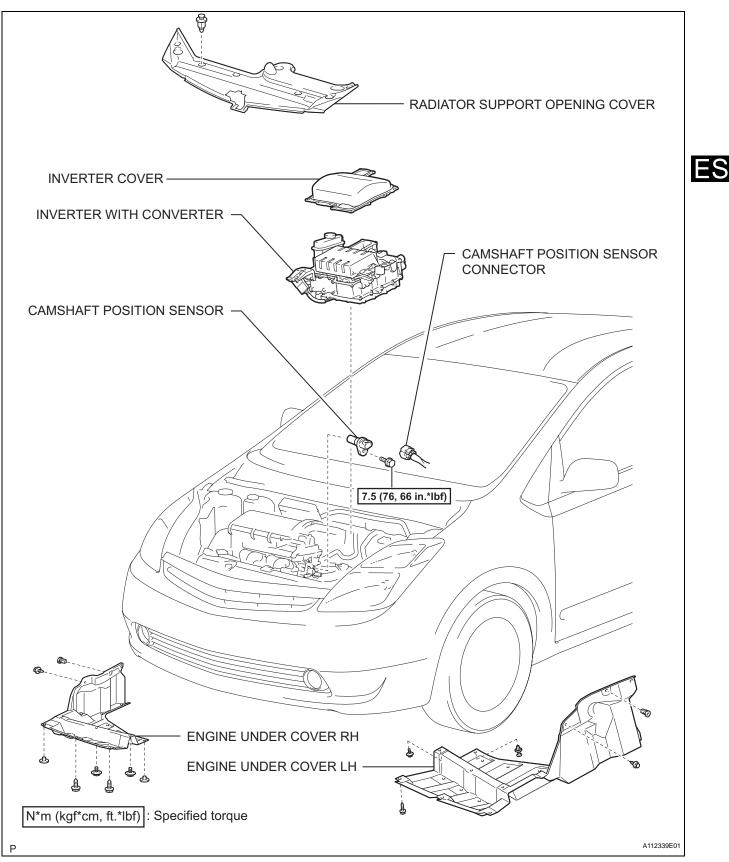

# will usually set a DTC.

- 1. INSTALL CAMSHAFT TIMING OIL CONTROL VALVE ASSEMBLY
  - (a) Apply a light coat of engine oil to a new O-ring, then install it to the camshaft timing oil control valve.
  - (b) Install the camshaft timing oil control valve with the bolt.

Torque: 7.5 N\*m (76 kgf\*cm, 66 in.\*lbf) NOTICE:

Be careful that the O-ring is not cracked or jammed when installing it.

- (c) Connect the camshaft timing oil control valve connector.
- 2. INSTALL AIR CLEANER ASSEMBLY (See page ES-453)
- 3. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 4. CHECK FOR ENGINE OIL LEAKS
- 5. INSTALL RADIATOR SUPPORT OPENING COVER (See page ES-454)




## 6. PERFORM INITIALIZATION

(a) Perform initialization (see page IN-32). NOTICE:

Certain systems need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.

## **CAMSHAFT POSITION SENSOR**



## REMOVAL

- 1. REMOVE RADIATOR SUPPORT OPENING COVER (See page ES-450)
- 2. REMOVE ENGINE UNDER COVER LH
- 3. REMOVE ENGINE UNDER COVER RH
- 4. DRAIN ENGINE COOLANT (See page CO-6)
- 5. DRAIN HV COOLANT (See page HX-58)
- 6. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL

#### CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

#### 7. REMOVE INVERTER WITH CONVERTER

 (a) Remove the inverter with converter (see page HV-530).

#### 8. REMOVE CAMSHAFT POSITION SENSOR

- (a) Disconnect the sensor connector.
- (b) Remove the bolt and sensor.

## INSPECTION

#### 1. INSPECT CAMSHAFT POSITION SENSOR

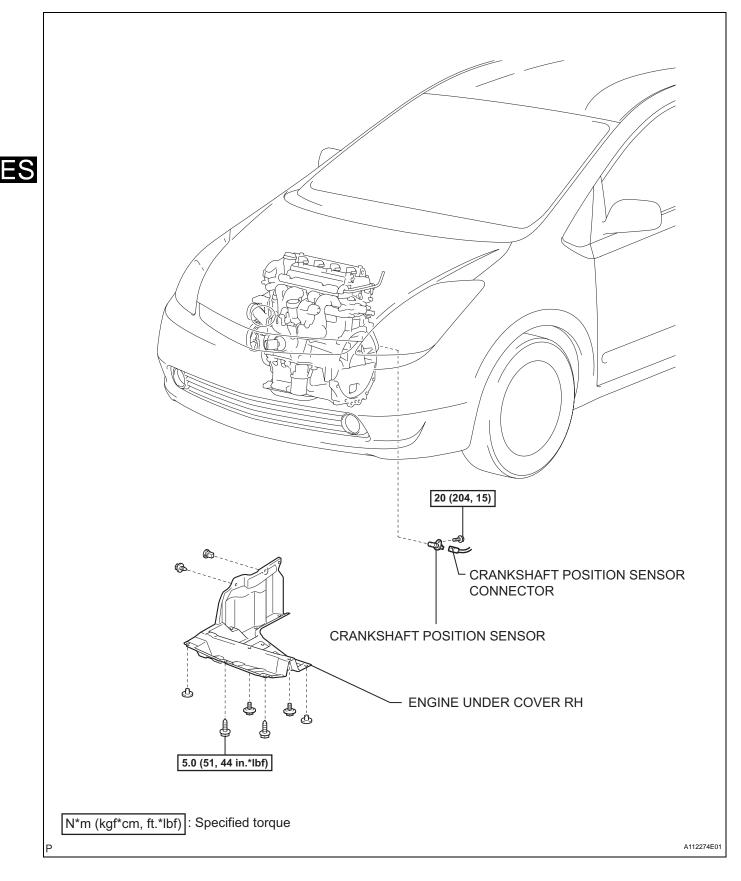
(a) Measure the resistance of the sensor. **Standard resistance** 

| Tester Connection | Condition | Specified Condition     |
|-------------------|-----------|-------------------------|
| 1 - 2             | Cold      | <b>1,630 to 2,740</b> Ω |
| 1 - 2             | Hot       | <b>2,065 to 3,225</b> Ω |

NOTICE:

The terms "Cold" and "Hot" refer to the temperature of the sensor. "Cold" means approximately -10 to 50°C (14 to 122°F). "Hot" means approximately 50 to 100°C (122 to 212°F). If the result is not as specified, replace the camshaft position sensor.




## \_0

#### 1. INSTALL CAMSHAFT POSITION SENSOR

- (a) Install the sensor with the bolt.
   Torque: 7.5 N\*m (76 kgf\*cm, 66 in.\*lbf)
- (b) Connect the sensor connector.
- 2. INSTALL INVERTER WITH CONVERTER
  - (a) Install the inverter with converter (see page HV-535).
- 3. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 4. ADD HV COOLANT (See page HX-58)
- 5. ADD ENGINE COOLANT (See page CO-7)
- 6. CHECK FOR ENGINE COOLANT LEAKS (See page CO-2)
- 7. CHECK FOR HV COOLANT LEAKS
- 8. INSTALL RADIATOR SUPPORT OPENING COVER (See page ES-454)
- 9. INSTALL ENGINE UNDER COVER RH
- 10. INSTALL ENGINE UNDER COVER LH
- **11. PERFORM INITIALIZATION** 
  - (a) Perform initialization (see page IN-32). NOTICE:

Certain systems need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.

## **CRANKSHAFT POSITION SENSOR**



## REMOVAL

#### 1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

2. REMOVE ENGINE UNDER COVER RH

## 3. REMOVE CRANKSHAFT POSITION SENSOR

- (a) Disconnect the sensor connector.
- (b) Remove the bolt and sensor.

## **INSPECTION**

- 1. INSPECT CRANKSHAFT POSITION SENSOR
  - (a) Measure the resistance of the sensor. **Standard resistance**

| Tester Connection | Condition | Specified Condition     |
|-------------------|-----------|-------------------------|
| 1 - 2             | Cold      | <b>985 to 1,600</b> Ω   |
| 1 - 2             | Hot       | <b>1,265 to 1,890</b> Ω |

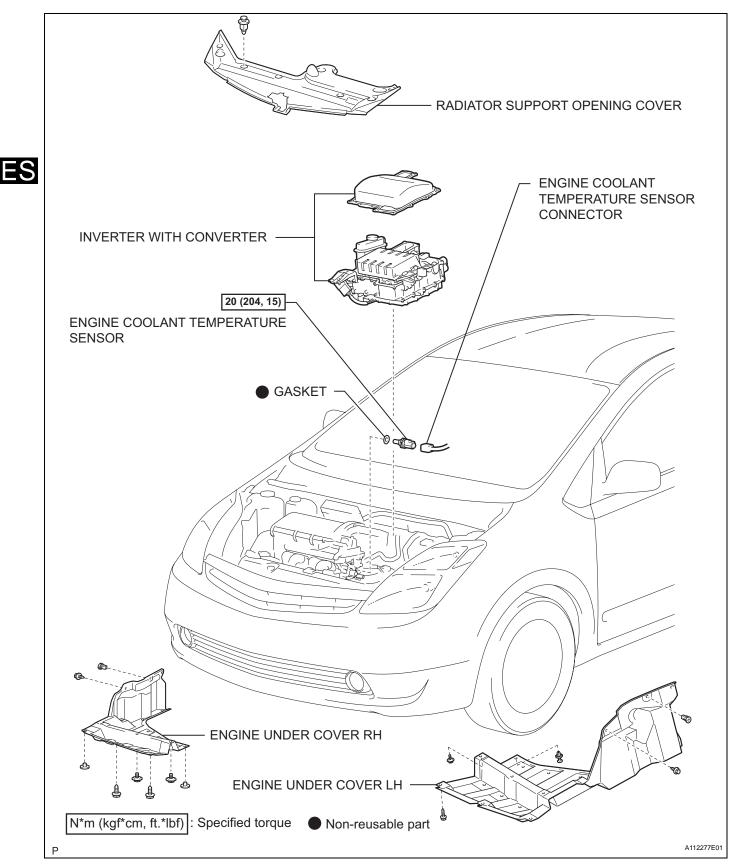
A078431E11

#### NOTICE:

The terms "Cold" and "Hot" refer to the temperature of the sensor. "Cold" means approximately -10 to 50°C (14 to 122°F). "Hot" means approximately 50 to 100°C (122 to 212°F). If the result is not as specified, replace the crankshaft position sensor.



=S


## INSTALLATION

#### 1. INSTALL CRANKSHAFT POSITION SENSOR

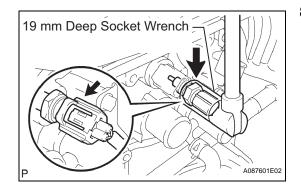
- (a) Install the sensor with the bolt. Torque: 7.5 N\*m (76 kgf\*cm, 66 in.\*lbf)
  (b) Connect the sensor connector.
- 2. INSTALL ENGINE UNDER COVER RH
- 3. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 4. PERFORM INITIALIZATION
  - (a) Perform initialization (see page IN-32). NOTICE:

Certain systems need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.

## **ENGINE COOLANT TEMPERATURE SENSOR**



## REMOVAL


#### CAUTION:

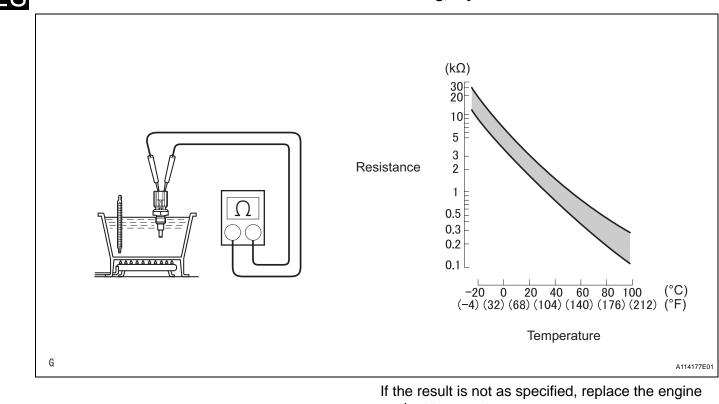
The hybrid system uses high voltage circuits, so improper handling could cause an electric shock or leakage. During servicing (e.g. installing or removing the parts, replacing the parts), be sure to follow the procedures below.

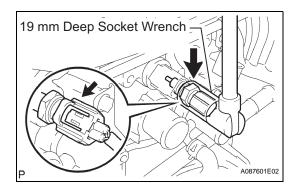
- 1. REMOVE RADIATOR SUPPORT OPENING COVER (See page ES-450)
- 2. REMOVE ENGINE UNDER COVER LH
- 3. REMOVE ENGINE UNDER COVER RH
- 4. DRAIN ENGINE COOLANT (See page CO-6)
- 5. DRAIN HV COOLANT (See page HX-58)
- 6. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

- 7. REMOVE INVERTER WITH CONVERTER
  - (a) Remove the inverter with converter (see page HV-530).
- 8. REMOVE ENGINE COOLANT TEMPERATURE SENSOR
  - (a) Disconnect the sensor connector.
  - (b) Using a 19 mm deep socket wrench, remove the sensor and gasket.




## INSPECTION


- **INSPECT ENGINE COOLANT TEMPERATURE** 1. SENSOR
  - (a) Measure the resistance of the sensor. Standard resistance

|   | Tester Connection | Condition    | Specified Condition     |
|---|-------------------|--------------|-------------------------|
|   | 1 - 2             | 20°C (68°F)  | <b>2.32 to 2.59 k</b> Ω |
| ſ | 1 - 2             | 80°C (176°F) | 0.310 to 0.326 kΩ       |

#### NOTICE:

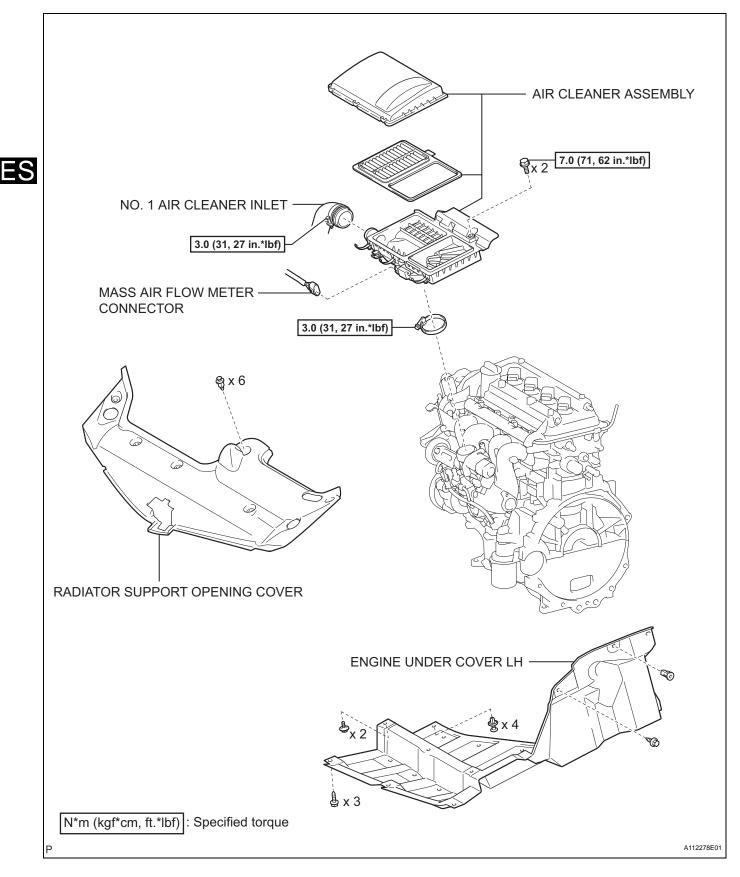
If checking the sensor in water, be careful not to allow water to contact the terminals. After checking, dry the sensor.

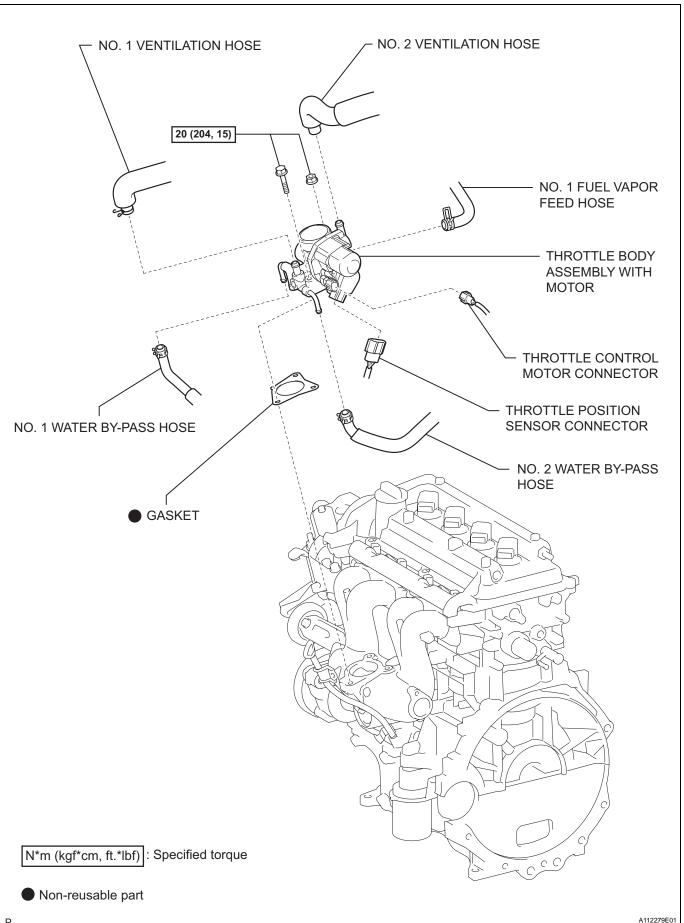




coolant temperature sensor.

## INSTALLATION


#### **INSTALL ENGINE COOLANT TEMPERATURE** 1. SENSOR


- (a) Using a 19 mm deep socket wrench, install a new gasket and the sensor. Torque: 20 N\*m (204 kgf\*cm, 15 ft.\*lbf)
- (b) Connect the sensor connector.
- 2. **INSTALL INVERTER WITH CONVERTER** 
  - (a) Install the inverter with converter (see page HV-535).
- CONNECT CABLE TO NEGATIVE BATTERY 3. TERMINAL
- 4. ADD ENGINE COOLANT (See page CO-7)
- ADD HV COOLANT (See page HX-58) 5.

- 6. CHECK FOR ENGINE COOLANT LEAKS (See page CO-2)
- 7. CHECK FOR HV COOLANT LEAKS
- 8. INSTALL ENGINE UNDER COVER RH
- 9. INSTALL ENGINE UNDER COVER LH
- 10. INSTALL RADIATOR SUPPORT OPENING COVER (See page ES-454)
- **11. PERFORM INITIALIZATION** 
  - (a) Perform initialization (see page IN-32).
     NOTICE:
     Certain systems need to be initialized after

disconnecting and reconnecting the cable from the negative (-) battery terminal.

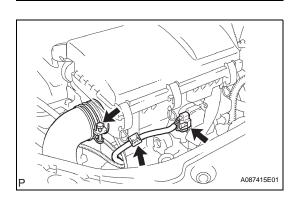
## THROTTLE BODY



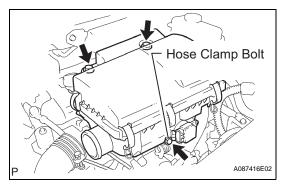


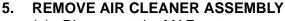
ES-449



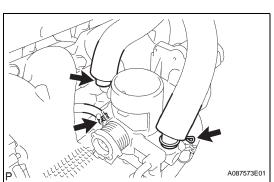

1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.


- 2. REMOVE ENGINE UNDER COVER LH
- 3. DRAIN ENGINE COOLANT (See page CO-6)

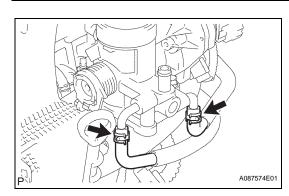

#### 4. REMOVE RADIATOR SUPPORT OPENING COVER

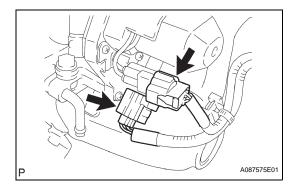
(a) Remove the 6 clips and radiator support opening cover.

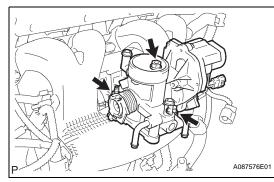


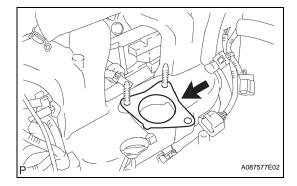

A087414E01







- (a) Disconnect the MAF meter connector.
- (b) Disconnect the wire harness from the wire harness clamp.
- (c) Loosen the hose clamp bolt, and then disconnect the No. 1 air cleaner inlet.
- (d) Remove the 2 bolts.
- (e) Loosen the hose clamp bolt, and then remove the air cleaner.



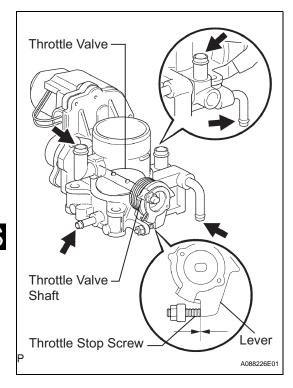


# 6. REMOVE THROTTLE BODY ASSEMBLY WITH MOTOR

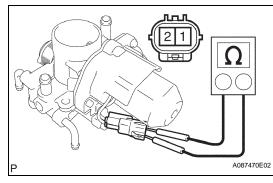
- (a) Disconnect the ventilation hose.
- (b) Disconnect the No. 2 ventilation hose.
- (c) Disconnect the No. 1 fuel vapor feed hose.

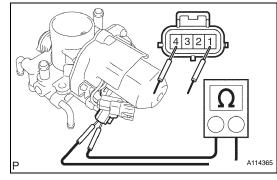


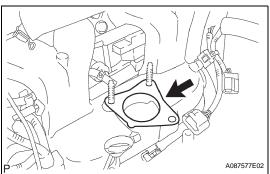








- (d) Disconnect the water by-pass hose.
- (e) Disconnect the No. 2 water by-pass hose.


- (f) Disconnect the throttle control motor connector.
- (g) Disconnect the throttle position sensor connector.


(h) Remove the bolt, 2 nuts and throttle with motor body.

(i) Remove the gasket from the intake manifold.









# INSPECTION

- 1. INSPECT THROTTLE WITH MOTOR BODY ASSEMBLY
  - (a) Check the appearance.
    - (1) Check that the throttle valve shaft does not rattle.
    - (2) Check that each port is not clogged.
    - (3) Check that the throttle valve opens and closes smoothly.
    - (4) Check that there is no clearance between the throttle stop screw and lever when the throttle valve is fully closed.
       NOTICE:

Do not adjust the throttle stop screw.

- (b) Inspect the resistance of the throttle control motor.
  - Using an ohmmeter, measure the resistance between the terminals.
     Standard resistance:

**50** M $\Omega$  or more at 25°C (77°F) If the resistance is not as specified, replace the throttle with motor body.

- (c) Inspect the resistance of the throttle position sensor.
  - Using an ohmmeter, measure the resistance between terminals 1 and 4.
     Standard resistance:

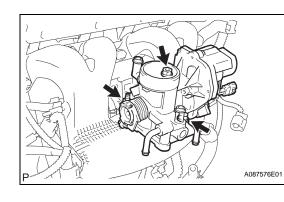
1.2 to 3.5 kΩ at 25°C (77°F)

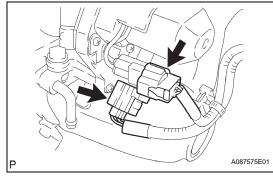
If the resistance is not as specified, replace the throttle with motor body.

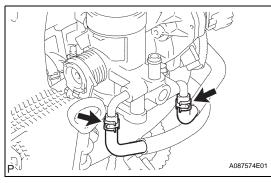
## INSTALLATION

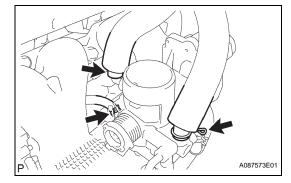
- 1. INSTALL THROTTLE BODY ASSEMBLY WITH MOTOR
  - (a) Install a new gasket to the intake manifold.

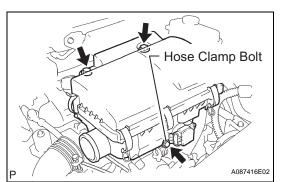
(b) Install the throttle with motor body with the bolt and 2 nuts.


Torque: 20 N\*m (204 kgf\*cm, 15 ft.\*lbf)


- (c) Connect the throttle position sensor connector.
- (d) Connect the throttle control motor connector.

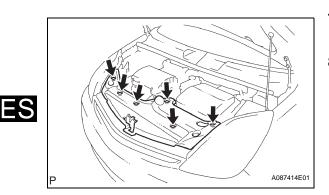

- (e) Connect the No. 2 water by-pass hose.
- (f) Connect the water by-pass hose.


- (g) Connect the No. 1 fuel vapor feed hose.
- (h) Connect the No. 2 ventilation hose.
- (i) Connect the ventilation hose.

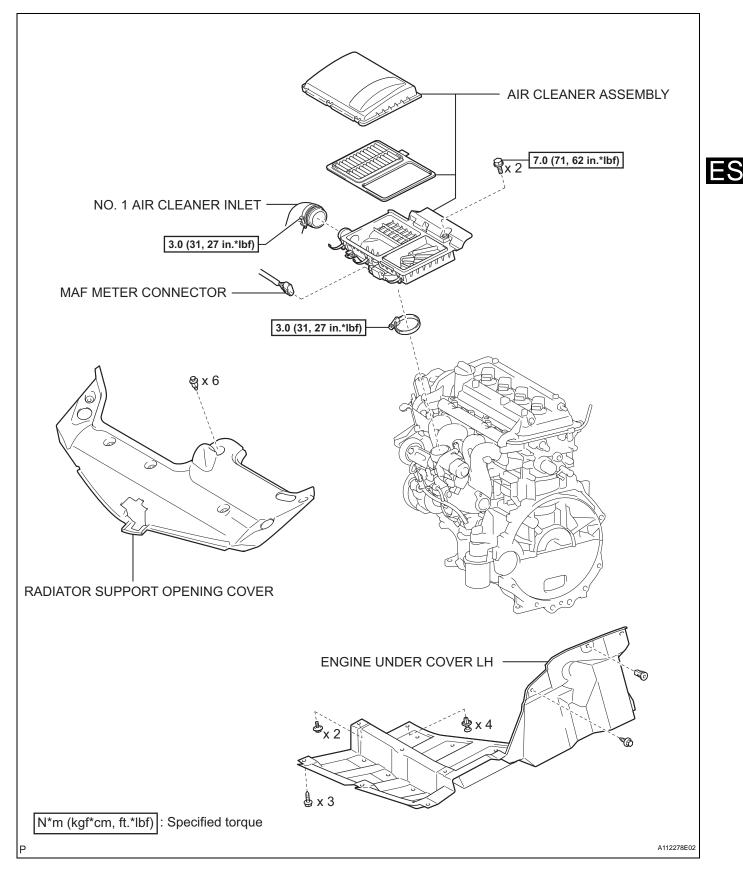

- **INSTALL AIR CLEANER ASSEMBLY** 2.
  - (a) Install the air cleaner with the 2 bolts. Torque: 7.0 N\*m (71 kgf\*cm, 62 in.\*lbf)
  - (b) Tighten the hose clamp bolt. Torque: 3.0 N\*m (31 kgf\*cm, 27 in.\*lbf)
  - (c) Connect the No. 1 air cleaner inlet, and tighten the hose clamp bolt.
    - Torque: 3.0 N\*m (31 kgf\*cm, 27 in.\*lbf)
  - (d) Connect the MAF meter connector.

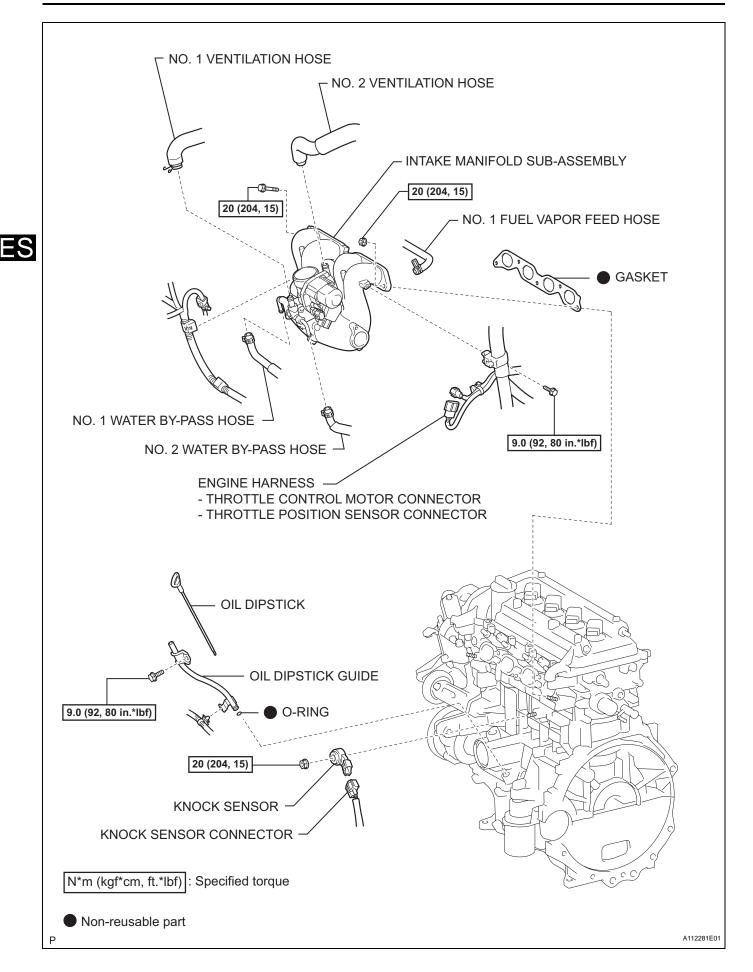








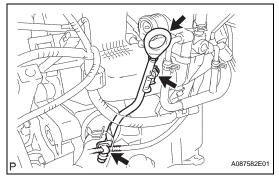


- 3. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 4. ADD ENGINE COOLANT (See page CO-7)
- 5. CHECK FOR ENGINE COOLANT LEAKS (See page CO-2)
- 6. INSTALL ENGINE UNDER COVER LH
- 7. INSTALL RADIATOR SUPPORT OPENING COVER(a) Install the cover with the 6 clips.
- 8. PERFORM INITIALIZATION
  - (a) Perform initialization (see page IN-32). NOTICE:

Certain systems need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.

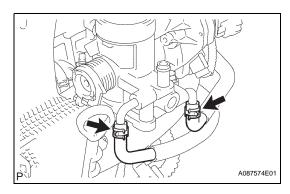


## **KNOCK SENSOR**





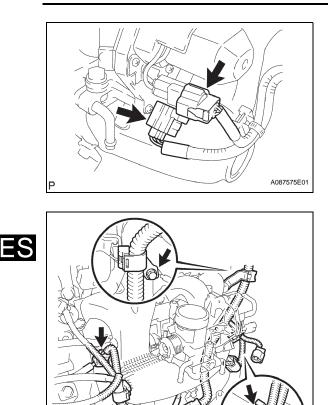

## REMOVAL


1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION: Wait at least 90 seconds after disconnecting the

cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

- 2. REMOVE RADIATOR SUPPORT OPENING COVER (See page ES-450)
- 3. REMOVE ENGINE UNDER COVER LH
- 4. DRAIN ENGINE COOLANT (See page CO-6)
- 5. REMOVE AIR CLEANER ASSEMBLY (See page ES-450)
- 6. REMOVE OIL DIPSTICK GUIDE
  - (a) Remove the dipstick.
  - (b) Disconnect the wire harness clamp.
  - (c) Remove the bolt and dipstick guide.




# 

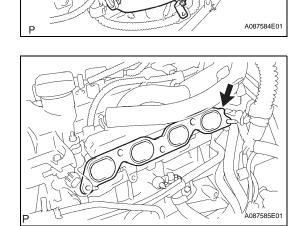


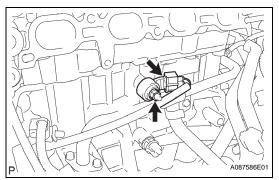
## 7. REMOVE INTAKE MANIFOLD SUB-ASSEMBLY

- (a) Disconnect the ventilation hose from the throttle with motor body.
- (b) Disconnect the No. 2 ventilation hose.
- (c) Disconnect the No. 1 fuel vapor feed hose.
- (d) Disconnect the water by-pass hose.
- (e) Disconnect the No. 2 water by-pass hose.






A087583E01


- (f) Disconnect the throttle control motor connector.
- (g) Disconnect the throttle position sensor connector.

- (h) Disconnect the 3 wire harness clamps.
- (i) Disconnect the connector clamp.
- (j) Remove the bolt and harness clamp bracket.

- (k) Remove the No. 1 fuel vapor feed hose from the hose clamp.
- (I) Remove the 3 bolts, 2 nuts and intake manifold.

(m) Remove the gasket from the cylinder head.





#### 8. REMOVE KNOCK SENSOR

- (a) Disconnect the knock sensor connector.
- (b) Remove the nut and sensor.

## INSPECTION

A065174E05

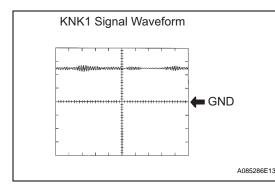
#### 1. INSPECT KNOCK SENSOR

(a) Measure the resistance of the sensor.Standard resistance:

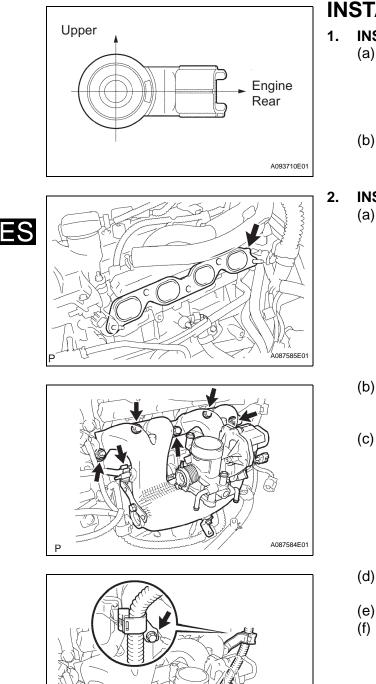
#### 120 to 280 kΩ at 20°C (68°F)

If the result is not as specified, replace the knock sensor.

- A flat type knock sensor (non-resonant type) has a structure that can detect vibrations between approximately 6 kHz and 15 kHz.
- Knock sensors are fitted onto the engine block to detect engine knocking.
- The knock sensor contains a piezoelectric element which generates a voltage when it becomes deformed. The voltage is generated when the engine block vibrates due to knocking. Any occurrence of engine knocking can be suppressed by delaying the ignition timing.


| DTC No. | DTC Detection Condition                                                        | Trouble Area                                                                     |
|---------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| P0327   | Output voltage of knock sensor is 0.5 V or<br>less<br>(1 trip detection logic) | <ul><li>Short in knock sensor circuit</li><li>Knock sensor</li><li>ECM</li></ul> |
| P0328   | Output voltage of knock sensor is 4.5 V or<br>more<br>(1 trip detection logic) | <ul><li>Open in knock sensor circuit</li><li>Knock sensor</li><li>ECM</li></ul>  |

#### HINT:


When either of the DTCs P0327 and P0328 are set, the ECM enters fail-safe mode. During fail-safe mode, the power timing is delayed to its maximum retardation. Fail-safe mode continues until the power switch OFF.

Reference: Inspection using an oscilloscope. The correct waveform is shown.

| Items              | Contents                                             |
|--------------------|------------------------------------------------------|
| Terminals          | KNK1 - EKNK                                          |
| Equipment Settings | 0.01 to 10 V/Division, 0.01 to 10 msec./<br>Division |
| Conditions         | Keep engine speed at 4,000 rpm with warm engine      |



ES-459



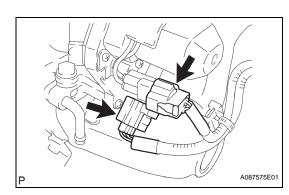
A087583E01

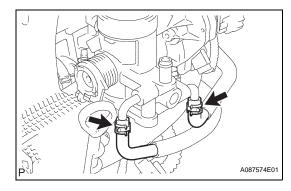
# INSTALLATION

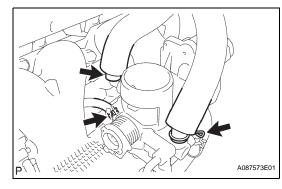
- INSTALL KNOCK SENSOR
  - (a) Install the knock sensor with the nut.
     Torque: 20 N\*m (204 kgf\*cm, 15 ft.\*lbf)
     NOTICE:
     Bo coroful to install the knock consor in the sensor in the senseq sensor in the sensor in the sensor in the sensor in the se

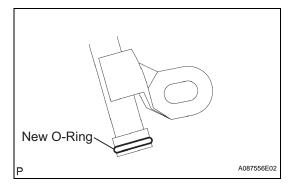
Be careful to install the knock sensor in the correct direction.

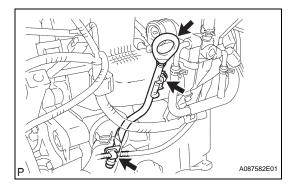
(b) Connect the knock sensor connector.


#### INSTALL INTAKE MANIFOLD


(a) Install a new gasket to the cylinder head.


(b) Install the intake manifold with the 3 bolts and 2 nuts.


Torque: 20 N\*m (204 kgf\*cm, 15 ft.\*lbf)


- (c) Install the No. 1 fuel vapor feed hose to the hose clamp.
- (d) Install the harness clamp bracket with the bolt. Torque: 9.0 N\*m (92 kgf\*cm, 80 in.\*lbf)
- (e) Install the connector clamp.
- (f) Install the 3 wire harness clamps.











- (g) Connect the throttle position sensor connector.
- (h) Connect the throttle control motor connector.

- (i) Connect the No. 2 water by-pass hose.
- (j) Connect the water by-pass hose.

- (k) Connect the No. 1 fuel vapor feed hose.
- (I) Connect the No. 2 ventilation hose.
- (m) Connect the ventilation hose.

#### 3. INSTALL OIL DIPSTICK GUIDE

(a) Apply a light coat of engine oil to a new O-ring and install it to the dipstick guide.

- (b) Install the dipstick guide with the bolt.
   Torque: 9.0 N\*m (92 kgf\*cm, 80 in.\*lbf) NOTICE:
   Be careful that the O-ring is not cracked or jammed when installing it.
- (c) Connect the wire harness clamp.
- (d) Install the dipstick.
- INSTALL AIR CLEANER ASSEMBLY (See page ES-453)

- 5. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 6. ADD ENGINE COOLANT (See page CO-7)
- 7. CHECK FOR ENGINE COOLANT LEAKS (See page CO-2)
- 8. INSTALL ENGINE UNDER COVER LH
- 9. INSTALL RADIATOR SUPPORT OPENING COVER (See page ES-454)
- **10. PERFORM INITIALIZATION** 
  - (a) Perform initialization (see page IN-32). NOTICE:

Certain systems need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.

# **EFI RELAY**

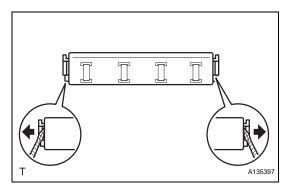
### **ON-VEHICLE INSPECTION**

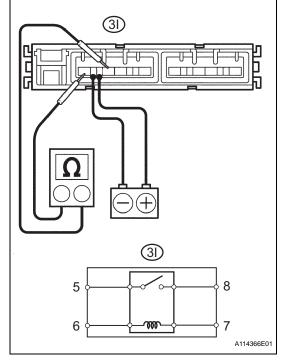
1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

- 2. INSPECT INTEGRATION RELAY (UNIT B: EFI RELAY M RELAY) NOTICE:
  - The EFI relay is built into the integration relay (unit B: EFI MAIN).
  - Some relays are built into the integration relay. The integration relay cannot be disassembled. If there is a malfunction in the circuit of the integration relay, replace the integration relay.
  - (a) Using a screwdriver, detach the 2 claws and disconnect the integration relay from the engine room No. 1 junction block. HINT:

Tape the screwdriver tip before use.


- (b) Disconnect the 3 connectors from the integration relay.
- (c) Measure the resistance between the terminals. **Standard resistance**


| Tester Connection | Specified Condition                                                           |
|-------------------|-------------------------------------------------------------------------------|
| 3I-5 - 3I-8       | 10 k $\Omega$ or higher                                                       |
| 3I-5 - 3I-8       | Below 1 $\Omega$ (when battery voltage is applied to terminals 3I-6 and 3I-7) |

If the result is not as specified, replace the integration relay.

- (d) Connect the 3 connectors to the integration relay.
- (e) Install the integration relay to the engine room No. 1 junction block.
- 3. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 4. PERFORM INITIALIZATION
  - (a) Perform initialization (see page IN-32). NOTICE:

Certain system need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.





## **CIRCUIT OPENING RELAY**

### **ON-VEHICLE INSPECTION**

1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

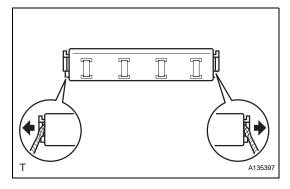
- 2. INSPECT INTEGRATION RELAY (UNIT C: C/OPN RELAY) NOTICE:
  - The EFI relay is built into the integration relay (unit C: C/OPN RELAY).
  - Some relays are built into the integration relay. The integration relay cannot be disassembled. If there is a malfunction in the circuit of the integration relay, replace the integration relay.
  - (a) Using a screwdriver, detach the 2 claws and disconnect the integration relay from the No. 1 engine room junction block. HINT:

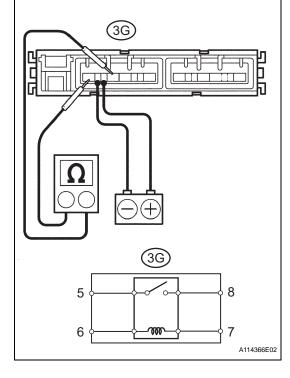
Tape the screwdriver tip before use.

- (b) Disconnect the 2 connectors from the integration relay.
- (c) Measure the resistance between the terminals. **Standard resistance**

| Tester Connection | Specified Condition                                                                 |
|-------------------|-------------------------------------------------------------------------------------|
| 3G-5 - 3G-8       | 10 k $\Omega$ or higher                                                             |
| 3G-5 - 3G-8       | Below 1 $\Omega$<br>(when battery voltage is applied to<br>terminals 3G-6 and 3G-7) |

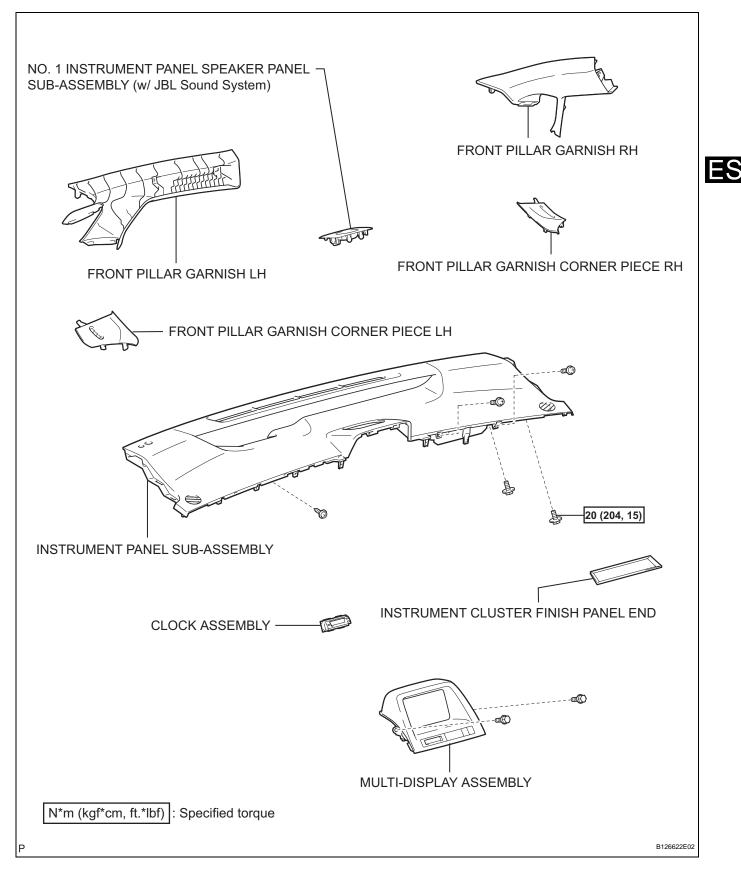
If the result is not as specified, replace the integration relay.

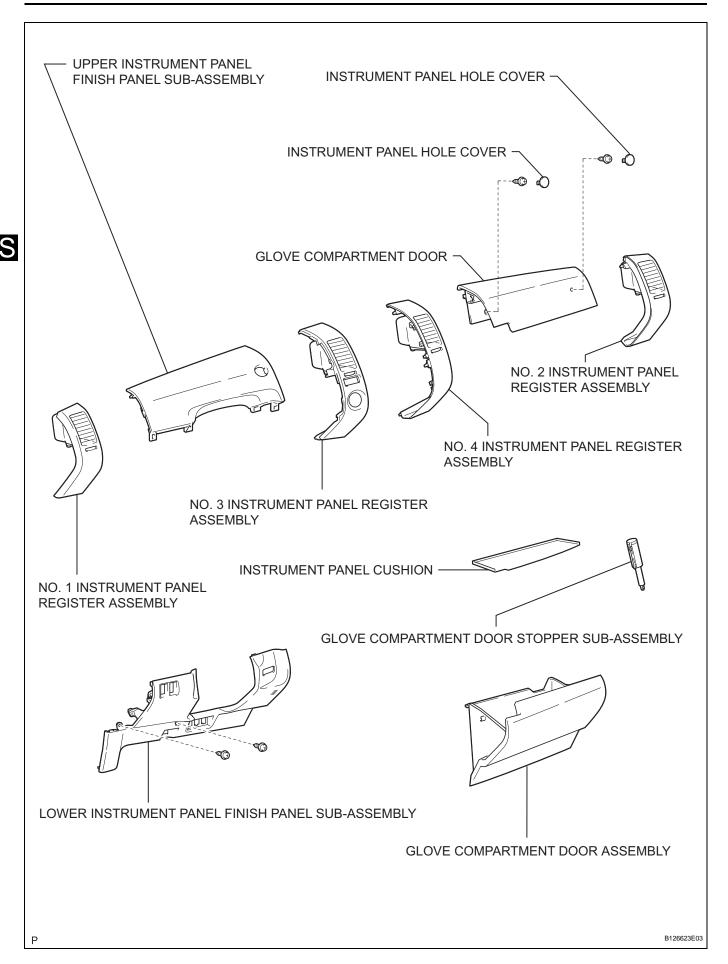

- (d) Connect the 2 connectors to the integration relay.
- (e) Install the integration relay to the engine room No. 1 junction block.

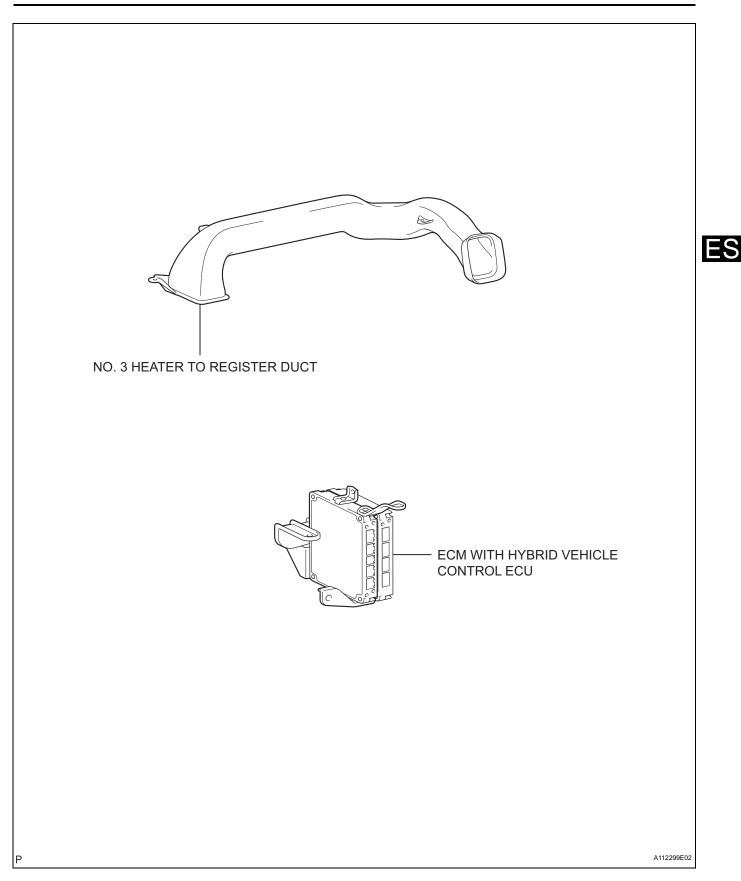

#### 3. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL

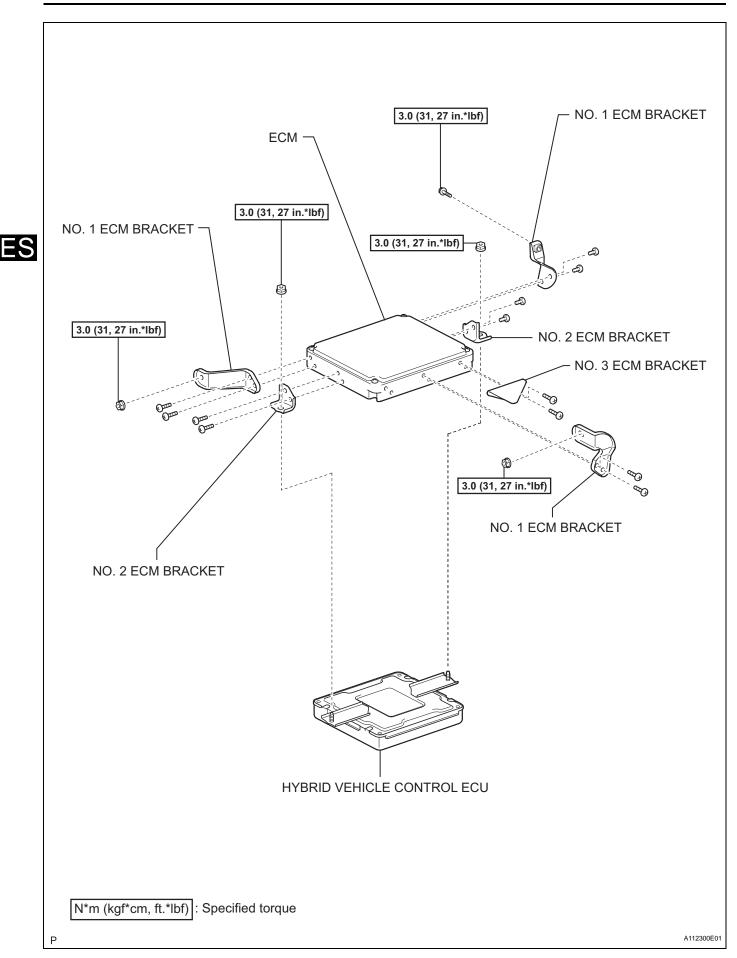
#### 4. PERFORM INITIALIZATION

(a) Perform initialization (see page IN-32). NOTICE:


Certain system need to be initialized after disconnecting and reconnecting the cable from the negative (-) battery terminal.





### ECM

### COMPONENTS





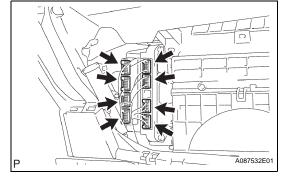


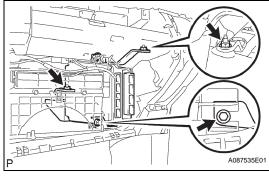


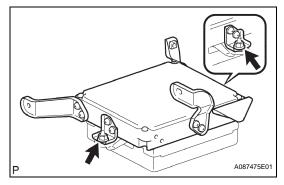
### REMOVAL

1. DISCONNECT CABLE FROM NEGATIVE BATTERY TERMINAL CAUTION:

Wait at least 90 seconds after disconnecting the cable from the negative (-) battery terminal to prevent airbag and seat belt pretensioner activation.

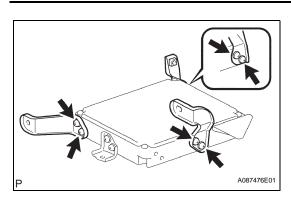

- **REMOVE INSTRUMENT PANEL SUB-ASSEMBLY** (a) Remove the instrument panel (see page IP-5).
- 3. REMOVE NO. 3 HEATER TO REGISTER DUCT (See page AC-147)


#### 4. REMOVE ECM


- (a) Disconnect the 4 ECM connectors.
- (b) Disconnect the 4 hybrid vehicle control ECU connectors.

(c) Remove the 2 nuts and bolt, and ECM with bracket.

(d) Remove the 2 nuts and ECM.



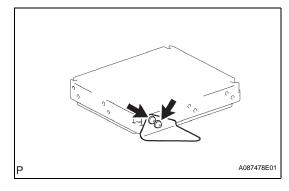


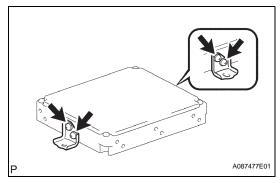



=5

ES

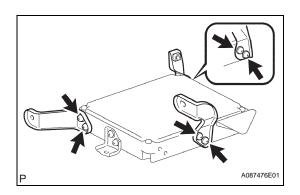


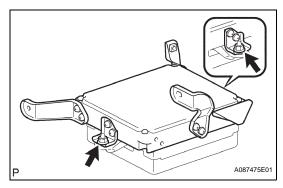

(e) Remove the 6 screws and 3 No. 1 ECM brackets.

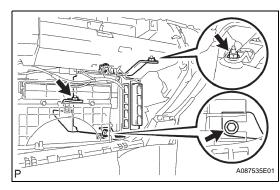

(f) Remove the 4 screws and 2 No. 2 ECM brackets.

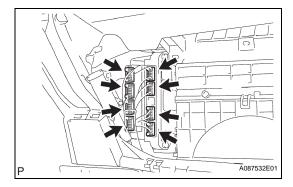
P A087478E01

A087477E01


(g) Remove the 2 screws and No. 3 ECM bracket.





- INSTALLATION
- 1. INSTALL ECM
  - (a) Install the No. 3 ECM bracket with the 2 screws.

(b) Install the 2 No. 2 ECM brackets with the 4 screws.









(c) Install the 3 No. 1 ECM brackets with the 6 screws.

(d) Install the ECM with the 2 nuts.Torque: 3.0 N\*m (31 kgf\*cm, 27 in.\*lbf)

(e) Install the ECM with bracket with the 2 nuts and bolt. Torque: 3.0 N\*m (31 kgf\*cm, 27 in.\*lbf)

- (f) Connect the 4 hybrid vehicle control ECU connectors.
- (g) Connect the 4 ECM connectors.
- 2. INSTALL NO. 3 HEATER TO REGISTER DUCT (See page AC-159)
- **3.** INSTALL INSTRUMENT PANEL SUB-ASSEMBLY

   (a) Install the instrument panel (see page IP-11).
- 4. CONNECT CABLE TO NEGATIVE BATTERY TERMINAL
- 5. PERFORM INITIALIZATION
  - (a) Perform initialization (see page IN-32).
     NOTICE:
     Certain systems need to be initialized after disconnecting and reconnecting the cable fit

disconnecting and reconnecting the cable from the negative (-) battery terminal.